Uneingeschränkter Zugang

Numerical Investigations of the Thermal Properties of Window Systems: A Review


Zitieren

[1] Fasi M.A., Budaiwi I.M.: Energy performance of windows in office buildings considering daylight integration and visual comfort in hot climates, Energy and Buildings, 108 (2015), pp. 307-316, https://doi.org/10.1016/j.enbuild.2015.09.024.10.1016/j.enbuild.2015.09.024 Search in Google Scholar

[2] Rezaei S.D., Shannigrahi S., Ramakrishna S.: A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment, Sol. Energy Mater. Sol. Cells, 159 (2017), pp. 26-51, https://doi.org/10.1016/j.solmat.2016.08.026.10.1016/j.solmat.2016.08.026 Search in Google Scholar

[3] Sun Y., Liang R., Wu Y., Wilson R., Rutherford P.: Development of a comprehensive method to analyze glazing systems with Parallel Slat Transparent Insulation material (PS-IM). Applied Energy, 205 (2017), pp. 951-63, https://doi.org/10.1016/j.apenergy.2017.08.041.10.1016/j.apenergy.2017.08.041 Search in Google Scholar

[4] Cuce E., Riffat S.B.: A state-of-the-art review on innovative glazing technologies, Renewable and Sustainable Energy Reviews, 41 (2015), pp. 695-714, https://doi.org/10.1016/j.rser.2014.08.084.10.1016/j.rser.2014.08.084 Search in Google Scholar

[5] Wang B., Koh W.S., Liu H., Yik J., Bui V.P.: Simulation and validation of solar heat gain in real urban environments, Build. Environ., 123 (2017), pp. 261-276, https://doi.org/10.1016/j.buildenv.2017.07.006.10.1016/j.buildenv.2017.07.006 Search in Google Scholar

[6] Wang Y., Shukla A., Liu S.: A state of art review on methodologies for heat transfer and energy flow characteristics of the active building envelopes, Renew. Sustain. Energy Rev., 78 (2017), pp. 1102-1116, https://doi.org/10.1016/j.rser.2017.05.015.10.1016/j.rser.2017.05.015 Search in Google Scholar

[7] Tian Z., Zhang X., Jin X., Zhou X., Shi X.: Towards adoption of building energy simulation and optimization for passive building design: a survey and a review, Energy Build., 158(1), (2018), pp. 1306-1316, https://doi.org/10.1016/j.enbuild.2017.11.022.10.1016/j.enbuild.2017.11.022 Search in Google Scholar

[8] Lizana J., Chacartegui R., Padura A.B., Ortiz C.: Advanced low-carbon energy measures based on thermal energy storage in buildings: a review, Renewable and Sustainable Energy Reviews, 82(3), (2018), pp. 3705-3749, https://doi.org/10.1016/j.rser.2017.10.093.10.1016/j.rser.2017.10.093 Search in Google Scholar

[9] Casini M.: Active dynamic windows for buildings: a review, Renewable Energy, 119 (2018), pp. 923-934, https://doi.org/10.1016/j.renene.2017.12.049.10.1016/j.renene.2017.12.049 Search in Google Scholar

[10] Hee W.J., Alghoul M.A., Bakhtyar B., OmKalthum E., Sopian K.: The role of window glazing on daylighting and energy saving in buildings, a review, Renewable and Sustainable Energy Reviews, 42 (2015), pp. 323-343, https://doi.org/10.1016/j.rser.2014.09.020.10.1016/j.rser.2014.09.020 Search in Google Scholar

[11] Aguilar-Santana J.L., Velasco-Carrasco M., Riffat S.: Thermal Transmittance (U-value) Evaluation of Innovative Window Technologies, Future Cities and Environment, 6(1), (2020), pp. 12, http://doi.org/10.5334/fce.99.10.5334/fce.99 Search in Google Scholar

[12] Sun Y., Wu Y., Wilson R.: A review of thermal and optical characterisation of complex window systems and their building performance prediction, Appl. Energy, 222(15), (2018), pp. 729-747, https://doi.org/10.1016/j.apenergy.2018.03.144.10.1016/j.apenergy.2018.03.144 Search in Google Scholar

[13] Basok B., Davydenko B., Novikov V., Pavlenko A.M., Novitska M., Sadko K., Goncharuk S.: Evaluation of Heat Transfer Rates through Transparent Dividing Structures, Energies, 15(13), (2022), pp. 4910, https://doi.org/10.3390/en15134910.10.3390/en15134910 Search in Google Scholar

[14] Gorantla K., Shaik S., Setty A.B.T.P.: Effects of single, double, triple and quadruple window glazing of various glass materials on heat gain in green energy buildings, Energy and Environment Engineering, (2017), pp. 45-50, https://doi.org/10.1007/978-981-10-2675-1_5.10.1007/978-981-10-2675-1_5 Search in Google Scholar

[15] Arıcı M., Karabay H., Kan M.: Flow and heat transfer in double, triple and quadruple pane windows, Energy Build., 86 (2015), pp. 394-402, https://doi.org/10.1016/j.enbuild.2014.10.043.10.1016/j.enbuild.2014.10.043 Search in Google Scholar

[16] Gan G.: Thermal transmittance of multiple glazing: computational fluid dynamics prediction, Applied Thermal Engineering, 21(15), (2001), pp. 1583-1592, https://doi.org/10.1016/S1359-4311(01)00016-3.10.1016/S1359-4311(01)00016-3 Search in Google Scholar

[17] Aydın O.: Conjugate heat transfer analysis of double pane windows, Building and Environment, 41(2), (2006), pp. 109-116, https://doi.org/10.1016/j.buildenv.2005.01.011.10.1016/j.buildenv.2005.01.011 Search in Google Scholar

[18] Arıcı M., Kan M.: An investigation of flow and conjugate heat transfer in multiple pane windows with respect to gap width, emissivity and gas filling, Renewable Energy, 75 (2015), pp. 249-256, https://doi.org/10.1016/j.renene.2014.10.004.10.1016/j.renene.2014.10.004 Search in Google Scholar

[19] Arıcı M., Karabay H.: Determination of optimum thickness of double-glazed windows for the climatic regions of Turkey. Energy and Buildings, 42 (2010), pp. 1773-1778, https://doi.org/10.1016/j.enbuild.2010.05.013.10.1016/j.enbuild.2010.05.013 Search in Google Scholar

[20] Ismail K.A.R., Salinas C.T., Henríquez J.R.: A comparative study of naturally ventilated and gas filled windows for hot climates. Energy Convers. Manage., 50 (2009), pp. 1691-1703, https://doi.org/10.1016/j.enconman.2009.03.026.10.1016/j.enconman.2009.03.026 Search in Google Scholar

[21] Park S., Song S-Y.: Evaluation of Alternatives for Improving the Thermal Resistance of Window Glazing Edges, Energies, 12 (2019), 244, https://doi.org/10.3390/en12020244.10.3390/en12020244 Search in Google Scholar

[22] Eames P.: Vacuum glazing: current performance and future prospects, Vacuum, 82 (2008), pp. 717-722, https://doi.org/10.1016/j.vacuum.2007.10.017.10.1016/j.vacuum.2007.10.017 Search in Google Scholar

[23] Fang Y., Eames P.C., Norton B., Hyde T.J., Zhao J., Wang J., Huang Y.: Low emittance coatings and the thermal performance of vacuum glazing, Solar Energy, 81 (2007), pp. 8-12, https://doi.org/10.1016/j.solener.2006.06.011.10.1016/j.solener.2006.06.011 Search in Google Scholar

[24] Wąs K., Radoń J., Sadłowska-Sałęga A.: Thermal Comfort - Case Study in a Lightweight Passive House, Energies, 15 (2022), 4687, https://doi.org/10.3390/en15134687.10.3390/en15134687 Search in Google Scholar

[25] Souviron J., van Moeseke G., Khan A.Z.: Analysing the environmental impact of windows: A review, Building and Environment, 161 (2019), 106268, https://doi.org/10.1016/j.buildenv.2019.106268.10.1016/j.buildenv.2019.106268 Search in Google Scholar

[26] Pal S., Roy B., Neogi S.: Heat transfer modelling on windows and glazing under the exposure of solar radiation, Energy and Buildings, 41(6), (2009), pp. 654-661, https://doi.org/10.1016/j.enbuild.2009.01.003.10.1016/j.enbuild.2009.01.003 Search in Google Scholar

[27] Xamán J., Jiménez-Xamán C., Álvarez G., Zavala-Guillén I., Hernández-Pérez I., Aguilar J.O.: Thermal performance of a double pane window with a solar control coating for warm climate of Mexico, Applied Thermal Engineering, 106 (2016), pp. 257-265, https://doi.org/10.1016/j.applthermaleng.2016.06.011.10.1016/j.applthermaleng.2016.06.011 Search in Google Scholar

[28] Pereira J., Gomes M.G., Rodrigues A.M., Almeida M.: Thermal, luminous and energy performance of solar control films in single-glazed windows: Use of energy performance criteria to support decision making, Energy Build., 148(198), (2019), pp. 431-443, https://doi.org/10.1016/j.enbuild.2019.06.003.10.1016/j.enbuild.2019.06.003 Search in Google Scholar

[29] Teixeira H., Gomes M.G., Rodrigues A.M., Pereira J.: Thermal and visual comfort, energy use and environmental performance of glazing systems with solar control films, Build. Environ., 168 (2020), 106474, https://doi.org/10.1016/j.buildenv.2019.106474.10.1016/j.buildenv.2019.106474 Search in Google Scholar

[30] Bavaresco M.V., Ghisi E.: Influence of user interaction with internal blinds on the energy efficiency of office buildings, Energy Build., 166(1), (2018), pp. 538-549, https://doi.org/10.1016/j.enbuild.2018.02.011.10.1016/j.enbuild.2018.02.011 Search in Google Scholar

[31] Jain S., Garg V.: A review of open loop control strategies for shades, blinds and integrated lighting by use of real-time daylight prediction methods, Build. Environ., 135(1), (2018), pp. 352-364, https://doi.org/10.1016/j.buildenv.2018.03.018.10.1016/j.buildenv.2018.03.018 Search in Google Scholar

[32] Lee A.D., Shepherd P.: Evernden M.C., Metcalfe D., Optimizing the architectural layouts and technical specifications of curtain walls to minimize use of aluminium, Structures, 13 (2018), pp. 8-25, https://doi.org/10.1016/j.istruc.2017.10.004.10.1016/j.istruc.2017.10.004 Search in Google Scholar

[33] Bedon C., Zhang X., Santos F., Honfi D., Lange D.: Performance of structural glass facades under extreme loads – design methods, existing research, current issues and trends, Constr. Build. Mater., 163(28), (2018), pp. 921-937, https://doi.org/10.1016/j.conbuildmat.2017.12.153.10.1016/j.conbuildmat.2017.12.153 Search in Google Scholar

[34] Ghosh A., Neogi S.: Effect of fenestration geometrical factors on building energy consumption and performance evaluation of a new external solar shading device in warm and humid climatic condition, Sol. Energy, 169(15), (2018), pp. 94-104, https://doi.org/10.1016/j.solener.2018.04.025.10.1016/j.solener.2018.04.025 Search in Google Scholar

[35] Lai K., Wang W., Giles H.: Solar shading performance of window with constant and dynamic shading function in different climate zones, Sol. Energy, 147(1), (2017), pp. 113-125, https://doi.org/10.1016/j.solener.2016.10.015.10.1016/j.solener.2016.10.015 Search in Google Scholar

[36] Silva T., Vicente R., Amaral C., Figueiredo A.: Thermal performance of a window shutter containing PCM: numerical validation and experimental analysis, Appl. Energy, 179(1), (2016), pp. 64-84, https://doi.org/10.1016/j.apenergy.2016.06.126.10.1016/j.apenergy.2016.06.126 Search in Google Scholar

[37] Naylor D., Lai B.Y.: Experimental study of natural convection in a window with a between-panes Venetian blind, Experimental Heat Transfer, 20 (2007), pp. 1-17, https://doi.org/10.1080/08916150600977358.10.1080/08916150600977358 Search in Google Scholar

[38] Dalal R., Naylor D., Roeleveld D.: A CFD study of convection in a double glazed window with an enclosed pleated blind, Energy Build, 41 (2009), pp. 1256-1262, https://doi.org/10.1016/j.enbuild.2009.07.024.10.1016/j.enbuild.2009.07.024 Search in Google Scholar

[39] Collins M., Tasnim S., Wright J.: Numerical analysis of convective heat transfer in fenestration with between-the-glass louvered shades, Build Environ, 44 (2009), pp. 2185-2192, https://doi.org/10.1016/j.buildenv.2009.03.017.10.1016/j.buildenv.2009.03.017 Search in Google Scholar

[40] Granqvist C., Bayrak P.I., Niklasson G.A.: Electrochromics on a roll: web-coating and lamination for smart windows, Surf. Coat. Technol., 336 (2018), pp. 133-138, https://doi.org/10.1016/j.surfcoat.2017.08.006.10.1016/j.surfcoat.2017.08.006 Search in Google Scholar

[41] Ji C., Wu Z., Wu X., Wang J., Jiang Y.: Al-doped VO2 films as smart window coatings: reduced phase transition temperature and improved thermochromic performance, Solar Energy Mater. Sol. Cells, 176 (2018), pp. 174-180, https://doi.org/10.1016/j.solmat.2017.11.026.10.1016/j.solmat.2017.11.026 Search in Google Scholar

[42] Wu Y., Krishnan P., Zhang M.H., Yu L.E.: Using photocatalytic coating to maintain solar reflectance and lower cooling energy consumption of buildings, Energy Build., 164(1), (2018), pp. 176-186, https://doi.org/10.1016/j.enbuild.2018.01.011.10.1016/j.enbuild.2018.01.011 Search in Google Scholar

[43] Feist W., Schnieders J., Dorer V., Haas A.: Re-inventing air heating: Convenient and comfortable within the frame of the Passive House concept, Energy Build., 37 (2005), pp. 1186-1203, https://doi.org/10.1016/j.enbuild.2005.06.020.10.1016/j.enbuild.2005.06.020 Search in Google Scholar

[44] Danza L., Barozzi B., Belussi L., Meroni I., Salamone F.: Assessment of the Performance of a Ventilated Window Coupled with a Heat Recovery Unit through the Co-Heating Test. Buildings, 6 (2016), 3, https://doi.org/10.3390/buildings6010003.10.3390/buildings6010003 Search in Google Scholar

[45] Zhang C., Wang J., Xu X., Zou F., Yu J.: Modeling and thermal performance evaluation of a switchable triple glazing exhaust air window, Applied Thermal Engineering, 92 (2016), pp. 8-17, https://doi.org/10.1016/j.applthermaleng.2015.09.080.10.1016/j.applthermaleng.2015.09.080 Search in Google Scholar

[46] Khalvati F., Omidvar A.: Summer study on thermal performance of an exhausting airflow window in evaporatively-cooled buildings, Appl. Therm. Eng., 153(2019), pp. 147-158, https://doi.org/10.1016/j.applthermaleng.2019.02.135.10.1016/j.applthermaleng.2019.02.135 Search in Google Scholar

[47] Carlos J.S.: Optimizing the ventilated double window for solar collection, Solar Energy, 150 (2017), pp. 454-462, https://doi.org/10.1016/j.solener.2017.04.063.10.1016/j.solener.2017.04.063 Search in Google Scholar

[48] Bhamjee M., Nurick A., Madyira D.M.: An experimentally validated mathematical and CFD model of a supply air window: Forced and natural flow, Energy and Buildings, 57 (2013), pp. 289-301, https://doi.org/10.1016/j.enbuild.2012.10.043.10.1016/j.enbuild.2012.10.043 Search in Google Scholar

[49] Fallahi A., Haghighat F., Elsadi H.: Energy performance assessment of double-skin façade with thermal mass, Energy Build, 42 (2010), pp. 1499-1509, https://doi.org/10.1016/j.enbuild.2010.03.020.10.1016/j.enbuild.2010.03.020 Search in Google Scholar

[50] Ding C., Ngo T., Mendis P., Lumantarna R., Zobec M.: Dynamic response of double skin façades under blast loads, Engineering Structures, 123 (2016), pp. 155-165, https://doi.org/10.1016/j.engstruct.2016.05.051.10.1016/j.engstruct.2016.05.051 Search in Google Scholar

[51] Zanghirella F., Perino M., Serra V.: A numerical model to evaluate the thermal behaviour of active transparent façades. Energy Build, 43 (2011), pp. 1123-1138, https://doi.org/10.1016/j.enbuild.2010.08.031.10.1016/j.enbuild.2010.08.031 Search in Google Scholar

[52] Ghadamian H., Ghadimi M., Shakouri M., Moghadasi M.: Analytical solution for energy modeling of double skin façades building, Energy Build., 50 (2012), p. 50, 158-165, https://doi.org/10.1016/j.enbuild.2012.03.034.10.1016/j.enbuild.2012.03.034 Search in Google Scholar

[53] ISO 10292: Glass in building – Calculation of steady-state U values (thermal transmittance) of multiple glazing; 1994. Search in Google Scholar

[54] ISO 15099: Thermal performance of windows, doors and shading devices – Detailed calculations; 2003. Search in Google Scholar

[55] EN 673: Glass in building – Determination of thermal transmittance (U value) – Calculation method; 2011. Search in Google Scholar

[56] Cengel Y.A.: Heat Transfer: A Practical Approach, 2nd ed., McGraw-Hill, 2003. Search in Google Scholar

[57] Giorgi L., Bertola V., Cafaro E.: Thermal convection in double glazed windows with structured gap, Energy and Buildings, 43(8), (2011), pp. 2034-2038, https://doi.org/10.1016/j.enbuild.2011.03.043.10.1016/j.enbuild.2011.03.043 Search in Google Scholar

[58] Gosselin J.R., Chen Q.: A computational method for calculating heat transfer and airflow through a dual-airflow window, Energy Build, 40 (4), (2008), pp. 452-458, https://doi.org/10.1016/j.enbuild.2007.03.010.10.1016/j.enbuild.2007.03.010 Search in Google Scholar

[59] Najaf Khosravi S., Mahdavi A.: A CFD-Based Parametric Thermal Performance Analysis of Supply Air Ventilated Windows, Energies, 14 (2021), p. 2420, https://doi.org/10.3390/en14092420.10.3390/en14092420 Search in Google Scholar

[60] Xamán J., Olazo-Gómez Y., Chávez Y., Hinojosa J.F., Hernández-Pérez I., Hernández-López I., Zavala-Guillén I.: Computational fluid dynamics for thermal evaluation of a room with a double glazing window with a solar control film, Renewable Energy, 94 (2016), pp. 237-250, https://doi.org/10.1016/j.renene.2016.03.055.10.1016/j.renene.2016.03.055 Search in Google Scholar

[61] Ganguli A.A., Pandit A.B., Joshi J.B.: CFD simulation of heat transfer in a two-dimensional vertical enclosure, Chem Eng Res Des, 87 (2009), pp. 711-727, https://doi.org/10.1016/j.cherd.2008.11.005.10.1016/j.cherd.2008.11.005 Search in Google Scholar

[62] Ganguli A.A., Pandit A.B., Joshi J.B.: Numerical predictions of flow patterns due to natural convection in a vertical slot, Chem Eng Sci, 62 (2007), pp. 4479-4495, https://doi.org/10.1016/j.ces.2007.05.017.10.1016/j.ces.2007.05.017 Search in Google Scholar

[63] Basok B., Davydenko B., Isaev S.A., Goncharuk S.M., Kuzhel L.N.: Numerical modeling of heat transfer through a triple-pane window, Journal of Engineering Physics and Thermophysics, 89(5), (2016), pp. 1277-1283, https://doi.org/10.1007/s10891-016-1492-7.10.1007/s10891-016-1492-7 Search in Google Scholar

[64] Manz H.: Numerical simulation of heat transfer by natural convection in cavities of facade elements, Energy and Buildings, 35 (2003), pp. 305-311, https://doi.org/10.1016/S0378-7788(02)00088-9.10.1016/S0378-7788(02)00088-9 Search in Google Scholar

[65] Xaman J., Alvarez G., Lira L., Estrada C.: Numerical study of heat transfer by laminar and turbulent natural convection in tall cavities of façade elements, Energy and Buildings, 37 (2005), pp. 787-794, https://doi.org/10.1016/j.enbuild.2004.11.001.10.1016/j.enbuild.2004.11.001 Search in Google Scholar

[66] Respondek Z.: Heat Transfer Through Insulating Glass Units Subjected to Climatic Loads, Materials, 13 (2020), 286. https://doi.org/10.3390/ma13020286.10.3390/ma13020286701437331936391 Search in Google Scholar

[67] Banionis K., Kumžienė J., Burlingis A., Ramanauskas J., Paukštys V.: The Changes in Thermal Transmittance of Window Insulating Glass Units Depending on Outdoor Temperatures in Cold Climate Countries, Energies, 14 (2021), 1694, https://doi.org/10.3390/en14061694.10.3390/en14061694 Search in Google Scholar

[68] Ismail K.A.R., Henríquez J.R.: Two-dimensional model for the double glass naturally ventilated window, International Journal of Heat and Mass Transfer, 48 (2005), pp. 461-475, https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.022.10.1016/j.ijheatmasstransfer.2004.09.022 Search in Google Scholar

[69] Chow T., Li V., Lin Z.: Innovative solar windows for cooling-demand climate, Solar Energy Materials and Solar Cells, 94(2), (2010), pp. 212-220, https://doi.org/10.1016/j.solmat.2009.09.004.10.1016/j.solmat.2009.09.004 Search in Google Scholar

[70] Rosenfeld J.L.J., Platzer W.J., van Dijk H., Maccari A.: Modelling the optical and thermal properties of complex glazing: overview of recent developments, Solar Energy, 69(6), (2001), pp. 1-13, https://doi.org/10.1016/S0038-092X(01)00028-7.10.1016/S0038-092X(01)00028-7 Search in Google Scholar

[71] Van Nijnatten P.A.: A spectrophotometer accessory for directional reflectance and transmittance of coated glazing, Solar Energy, 73 (2002), pp. 137-149, https://doi.org/10.1016/S0038-092X(02)00047-6.10.1016/S0038-092X(02)00047-6 Search in Google Scholar

[72] Chaiyapinunt S., Phueakphongsuriya B., Mongkornsaksit K., Khomporn N.: Performance rating of glass windows and glass windows with films in aspect of thermal comfort and heat transmission, Energy and Buildings, 37 (2005), pp. 725-738, https://doi.org/10.1016/j.enbuild.2004.10.008.10.1016/j.enbuild.2004.10.008 Search in Google Scholar

[73] Ismail K.A.R., Henríquez J.R.: Thermally effective windows with moving phase change material curtains, Applied Thermal Engineering, 21 (2001), pp. 1909-1923, https://doi.org/10.1016/S1359-4311(01)00058-8.10.1016/S1359-4311(01)00058-8 Search in Google Scholar

[74] Ismail K.A.R., Henríquez J.R.: Modeling and simulation of a simple glass window, Solar Energy Materials and Solar Cells, 80 (2003), pp. 355-374, https://doi.org/10.1016/j.solmat.2003.08.010.10.1016/j.solmat.2003.08.010 Search in Google Scholar

[75] Ismail K.A.R., Henríquez J.R.: Simplified model for a ventilated glass window under forced air flow conditions, Applied Thermal Engineering, 26 (2006), pp. 295-302, https://doi.org/10.1016/j.applthermaleng.2005.04.023.10.1016/j.applthermaleng.2005.04.023 Search in Google Scholar

[76] Jaber S., Ajib S.: Thermal and economic windows design for different climate zones, Energy Build, 43 (2011), pp. 3208-3215, https://doi.org/10.1016/j.enbuild.2011.08.019.10.1016/j.enbuild.2011.08.019 Search in Google Scholar

[77] Alvarez G., Flores J.J., Aguilar J.O., Gomez-Daza O., Estrada C.A., Nair M.T.S., Nair P.K.: Spectrally selective laminated glazing consisting of solar control and heat mirror coated glass: preparation, characterization and modeling of heat transfer, Solar Energy, 78 (2005), pp. 113-124, https://doi.org/10.1016/j.solener.2004.06.021.10.1016/j.solener.2004.06.021 Search in Google Scholar

[78] Oliveti G., Arcuri N., Bruno R., De Simone M.: An accurate calculation model of solar heat gain through glazed surfaces, Energy and Buildings, 43 (2-3), 2011, pp. 269-274, https://doi.org/10.1016/j.enbuild.2010.11.009.10.1016/j.enbuild.2010.11.009 Search in Google Scholar

[79] Avedissian T., Naylor D.: Free convective heat transfer in an enclosure with an internal louvered blind, Int International Journal of Heat and Mass Transfer, 51(1-2), (2008), pp. 283-293, https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.042.10.1016/j.ijheatmasstransfer.2007.03.042 Search in Google Scholar

[80] Sun Y., Wu Y., Wilson R., Sun S.: Thermal evaluation of a double glazing façade system with integrated Parallel Slat Transparent Insulation Material (PS-TIM), Build Environ, 105 (2016), pp. 69-81, https://doi.org/10.1016/j.buildenv.2016.05.004.10.1016/j.buildenv.2016.05.004 Search in Google Scholar

[81] Wang T.P., Wang L., Li B.: A model of the long-wave radiation heat transfer through a glazing, Energy and Buildings, 59 (2013), pp. 50-61, https://doi.org/10.1016/j.enbuild.2012.12.027.10.1016/j.enbuild.2012.12.027 Search in Google Scholar

[82] Han J., Lu L., Yang H.: Numerical evaluation of the mixed convective heat transfer in a double-pane window integrated with see-through a-Si PV cells with low-e coatings, Applied Energy, 87(11), (2010), pp. 3431-3437, https://doi.org/10.1016/j.apenergy.2010.05.025.10.1016/j.apenergy.2010.05.025 Search in Google Scholar

[83] Romaní J., Ramos A., Salom J.: Review of Transparent and Semi-Transparent Building-Integrated Photovoltaics for Fenestration Application Modeling in Building Simulations, Energies, 15(9), (2022), 3286, https://doi.org/10.3390/en15093286.10.3390/en15093286 Search in Google Scholar

[84] Infield D., Mei L., Eicker U.: Thermal performance estimation for ventilated PV facades, Solar Energy, 76 (2004), pp. 93-98, https://doi.org/10.1016/j.solener.2003.08.010.10.1016/j.solener.2003.08.010 Search in Google Scholar

[85] Misara S., Henze N., Sidelev A.: Thermal Behaviours of BIPV-Modules (U-Value and g-Value), In Proceedings of the 26th European Photovoltaic Solar Energy Conference and Exhibition, 2011, pp. 4107-4115, https://doi.org/10.4229/26thEUPVSEC2011-5BV.1.17. Search in Google Scholar

[86] Han J., Lu L., Peng J., Yang H.: Performance of ventilated double-sided PV façade compared with conventional clear glass façade, Energy Build, 56 (2013), pp. 204-209, https://doi.org/10.1016/j.enbuild.2012.08.017.10.1016/j.enbuild.2012.08.017 Search in Google Scholar

[87] Chow T.T., Fong K.F., He W., Lin Z., Chan A.L.S.: Performance evaluation of a PV ventilated window applying to office building of Hong Kong, Energy Build, 39 (2007), pp. 643-650, https://doi.org/10.1016/j.enbuild.2006.09.01410.1016/j.enbuild.2006.09.014 Search in Google Scholar

[88] Han J., Lu L., Yang H.: Thermal behavior of a novel type see-through glazing system with integrated PV cells, Build. Env, 44 (2009), pp. 2129-2136, https://doi.org/10.1016/j.buildenv.2009.03.003.10.1016/j.buildenv.2009.03.003 Search in Google Scholar

[89] Kapsis K., Athienitis A.K.: A study of the potential benefits of semi-transparent photovoltaics in commercial buildings, Sol. Energy, 115 (2015), pp. 120-132, https://doi.org/10.1016/j.solener.2015.02.016.10.1016/j.solener.2015.02.016 Search in Google Scholar

[90] Ng P.K., Mithraratne N., Kua H.W.: Energy analysis of semi-transparent BIPV in Singapore buildings, Energy Build, 66 (2013), pp. 274-281, https://doi.org/10.1016/j.enbuild.2013.07.029.10.1016/j.enbuild.2013.07.029 Search in Google Scholar

[91] Gevers R.H., Pretorius J.H.C., van Rhyn P.: Novel approach for concentrating and harvesting solar radiation in hybrid transparent photovoltaic façade’s in Southern Africa, Renew. Energy Power Qual. Journal, 1 (2015), pp. 245-250, https://doi.org/10.24084/repqj13.295.10.24084/repqj13.295 Search in Google Scholar

[92] Nourozi B., Ploskić A., Chen Y., Ning-Wei Chiu J., Wang Q.: Heat transfer model for energy-active windows – An evaluation of efficient reuse of waste heat in buildings, Renew. Energy, 162 (2020), pp. 2318-2329, https://doi.org/10.1016/j.renene.2020.10.043.10.1016/j.renene.2020.10.043 Search in Google Scholar

[93] Churchill S.W., Chu H.H.S.: Correlating equations for laminar and turbulent free convection from a vertical plate, International Journal of Heat and Mass Transfer, 18(11), (1975), pp. 1323-1329, https://doi.org/10.1016/0017-9310(75)90243-4.10.1016/0017-9310(75)90243-4 Search in Google Scholar

[94] Jelle B.P., Kalnæs S.E., Gao T.: Low-emissivity materials for building applications: A state-of-the-art review and future research perspectives, Energy and Buildings, 96 (2015), pp. 329-356, https://doi.org/10.1016/j.enbuild.2015.03.024.10.1016/j.enbuild.2015.03.024 Search in Google Scholar

[95] Brzezicki M.: A Systematic Review of the Most Recent Concepts in Smart Windows Technologies with a Focus on Electrochromics, Sustainability, 13 (2021), 9604, https://doi.org/10.3390/su13179604.10.3390/su13179604 Search in Google Scholar

[96] Aburas M., Soebarto V., Williamson T., Liang R., Ebendorff-Heidepriem H., Wu Y.: Thermochromic smart window technologies for building application: A review, Applied Energy, 255 (2019), 113522, https://doi.org/10.1016/j.apenergy.2019.113522.10.1016/j.apenergy.2019.113522 Search in Google Scholar

[97] Sun Y., Liu X., Ming Y., Liu X., Mahon D., Wilson R., Liu H., Eames P., Wu Y.: Energy and daylight performance of a smart window: Window integrated with thermotropic parallel slat-transparent insulation material, Applied Energy, 293 (2021), p. 116826, https://doi.org/10.1016/j.apenergy.2021.116826.10.1016/j.apenergy.2021.116826 Search in Google Scholar

[98] Heidari M.N., Eydgahi A., Matin P.: The Effect of Smart Colored Windows on Visual Performance of Buildings, Buildings, 12 (2022), 861, https://doi.org/10.3390/buildings12060861.10.3390/buildings12060861 Search in Google Scholar

[99] Feng W., Zou L., Gao G., Wu G., Shen J., Li W.: Gasochromic smart window: optical and thermal properties, energy simulation and feasibility analysis, Solar Energy Materials and Solar Cells, 144 (2016), pp. 316-323, https://doi.org/10.1016/j.solmat.2015.09.029.10.1016/j.solmat.2015.09.029 Search in Google Scholar

[100] Zhou Y., Fan F., Liu Y., Zhao S., Xu Q., Wang S., Luo D., Long Y.: Unconventional smart windows: Materials, structures and designs, Nano Energy, 90 (2021), 106613, https://doi.org/10.1016/j.nanoen.2021.106613.10.1016/j.nanoen.2021.106613 Search in Google Scholar

[101] Heiz B.P.V., Pan Z., Su L., Le S.T., Wondraczek L.: A large-area smart window with tunable shading and solar-thermal harvesting ability based on remote switching of a magneto-active liquid, Adv. Sustain. Syst., 2 (2018), 1870001, https://doi.org/10.1002/adsu.201700140.10.1002/adsu.201700140 Search in Google Scholar

eISSN:
2657-6902
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Architektur und Design, Architektur, Architekten, Gebäude, Konstruktion, Materialien, Technik, Einführungen und Gesamtdarstellungen, andere