Uneingeschränkter Zugang

Measurement of activated sludge particle diameters using laser diffraction method / Pomiary średnicy cząstek osadu czynnego za pomocą metody dyfrakcji laserowej


Zitieren

[1] Curds CR. The role of protozoa in the activated-sludge process. Amer Zool. 1973;13(1):161-169.10.1093/icb/13.1.161Search in Google Scholar

[2] Klimowicz H. The importance of microfauna in sewage treatment with activated sludge (in Polish). Warszawa: Zakład Wydawnictw Instytutu Kształtowania Środowiska; 1983.Search in Google Scholar

[3] Madoni P. A sludge biotic index (SBI) for evaluation of the biological performance of activated sludge plants based on the microfauna analysis. Water Res. 1994;28(1):67-75. DOI: 10.1016/0043-1354(94)90120-1.10.1016/0043-1354(94)90120-1Search in Google Scholar

[4] Eikelboom DH. Process control of activated sludge plants by microscopic investigation. London: IWA Publishing; 2000.Search in Google Scholar

[5] Montusiewicz A, Malicki J, Łagód G, Chomczynska M. Estimating the efficiency of wastewater treatment in activated sludge systems by biomonitoring. In: Pawlowski L, Dudzinska M, Pawlowski A. editors. Environ Eng. London: Taylor and Francis Group; 2007:47-54.Search in Google Scholar

[6] Arregui L, Serrano S, Linares M, Pérez-Uz B, Guinea A. Ciliate contributions to bioaggeregation: laboratory assays with axenic cultures of Tetrahymena thermophila. Int. Microbiol. 2007;10:91-96. DOI: 10.2436/20.1501.01.13.Search in Google Scholar

[7] Arregui L, Linares M, Pérez-Uz B, Guinea A, Serrano S. Involvement of crawling and attached ciliates in the aggregation of particles in wastewater treatment plants. Air Soil Water Res. 2009;1:13-19.Search in Google Scholar

[8] Chomczyńska M, Montusiewicz A, Malicki J, Łagód G. Application of saprobes for bioindication of wastewater quality. Environ Eng Sci. 2009;26(2):289-295. DOI:10.1089/ees.2007.0311.10.1089/ees.2007.0311Search in Google Scholar

[9] Bitton G. Wastewater Microbiology. New Jersey: Hoboken, John Wiley & Sons Inc.; 2005.10.1002/0471717967Search in Google Scholar

[10] Gerardi MH. Wastewater Bacteria. New Jersey: Hoboken, John Wiley & Sons Inc.; 2006.10.1002/0471979910Search in Google Scholar

[11] Liwarska-Bizukojc E. Application of image analysis techniques in activated sludge wastewater treatment process. Biotechnol Lett. 2005;27:1427-1433. DOI: 10.1007/s10529-005-1303-2.10.1007/s10529-005-1303-216231212Search in Google Scholar

[12] Eikelboom DH, van Buijsen HJJ. Microscopic Sludge Investigation Manual. 1st edition (in Polish). Szczecin: Sejdel-Przywecki; 1999.Search in Google Scholar

[13] Quevauviller P, Thomas O, Van Der Beken A. Wastewater Quality Monitoring and Treatment. Chichester: John Wiley & Sons Ltd; 2006.10.1002/9780470058725Search in Google Scholar

[14] Łagód G, Malicki J, Chomczyńska M, Montusiewicz A. Interpretation of the results of wastewater quality biomonitoring using saprobes. Environ Eng Sci. 2007;24(7):873-879. DOI:10.1089/ees.2006.0090.10.1089/ees.2006.0090Search in Google Scholar

[15] Łagód G, Chomczyńska M, Montusiewicz A, Malicki J, Bieganowski A. Proposal of measurement and visualization methods for dominance structures in the saprobe communities. Ecol Chem Eng S. 2009;16(3):369-377.Search in Google Scholar

[16] Brzezińska M, Sokołowska Z, Alekseeva T, Alekseev A, Hajnos M, Szarlip P. Some characteristics of organic soils irrigated with municipal wastewater. Land Degrad Dev. 2011;22:586-595. DOI: 10.1002/ldr.103610.1002/ldr.1036Search in Google Scholar

[17] Włodarczyk T, Witkowska-Walczak B, Majewska U. Soil profile as a natural membrane for heavy metals from wastewater. Int. Agrophys. 2012;26:71-80. DOI: 10.2478/v10247-012-0011-0.10.2478/v10247-012-0011-0Search in Google Scholar

[18] Ben Fredj F, Han J, Irie M, Funamizu N, Ghrabi A, Isoda H. Assessment of wastewater-irrigated soil containing heavy metals and establishment of specific biomarkers. Ecotoxicol Environ Saf. 2012;84:54-62. DOI:10.1016/j.ecoenv.2012.06.020.10.1016/j.ecoenv.2012.06.020Search in Google Scholar

[19] Malicki J, Montusiewicz A, Bieganowski A. Improvement of counting helminth eggs with internal standard. Water Res. 2001; 35:2333-2335. DOI: 10.1016/S0043-1354(00)00517-010.1016/S0043-1354(00)00517-0Search in Google Scholar

[20] Jezierska-Tys S, Frąc M, Tys J. Microbiological hazards resulting from application of dairy sewage sludge: effects on occurrence of pathogenic microorganisms in soil. J. Toxicol. Environ. Health - Part A. 2010;73:1194-1201. DOI: 10.1080/15287394.2010.491777.10.1080/15287394.2010.491777Search in Google Scholar

[21] Stevik TK, Aa K, Ausland G, Hanssen JF. Retention and removal of pathogenic bacteria in wastewater percolating through porous media: a review. Water Res. 2004;38:1355-1367. DOI: 10.1016/j.watres.2003.12.024.10.1016/j.watres.2003.12.024Search in Google Scholar

[22] Hopkins BM. A quantitative image analysis system. Opt Eng. 1976;15:236-240.10.1117/12.7971956Search in Google Scholar

[23] Barbusiński K, Kościelniak H. Influence of substrate loading intensity on flock size in activated sludge process. Water Res. 1995;29(7):1703-1710.10.1016/0043-1354(94)00326-3Search in Google Scholar

[24] Neis U, Tiehm A. Particle size analysis in primary and secondary waste water effluents. Water Sci Technol. 1997;36(4):151-158. DOI:10.1016/S0273-1223(97)00434-4.10.1016/S0273-1223(97)00434-4Search in Google Scholar

[25] Hilligardt D, Hoffmann E. Particle size analysis and sedimentation properties of activated sludge flocs. Water Sci Technol. 1997;36(4):167-175. DOI:/10.1016/S0273-1223(97)00436-8.10.2166/wst.1997.0112Search in Google Scholar

[26] Zhou J, Mavinic DS, Kelly HG. Flocs size profiling to characterise dewatering properties of thermophilic and mesophilic aerobically digested biosolids. In: Proc 7th CSCE Environ Eng Conf. May 30-June 2, Victoria, BC, Canada 2001.10.2175/193864701790902068Search in Google Scholar

[27] Dobrowolski R, Bieganowski A, Mroczek P, Ryżak M. Role of Periglacial Processes in Epikarst Morphogenesis: A Case Study from Chełm Chalk Quarry, Lublin Upland, Eastern Poland. Permafrost and Periglac Process. DOI: 10.1002/ppp.1750.10.1002/ppp.1750Search in Google Scholar

[28] Molinaroli E, De Falco G, Matteucci G, Guerzoni S. Sedimentation and time-of-transition techniques for measuring grain-size distributions in lagoonal flats: comparability of results. Sedimentology. 2011;58: 1407-1413. DOI: 10.1111/j.1365-3091.2010.01217.x.10.1111/j.1365-3091.2010.01217.xSearch in Google Scholar

[29] Vendelboe AL, Moldrup P, Schjonning P, Oyedele DJ, Jin Y, Scow KM, de Jonge L. W. Colloid release from soil aggregates: application of laser diffraction. Vadose Zone J. 2012;11. DOI: 10.2136/vzj2011.0070.10.2136/vzj2011.0070Search in Google Scholar

[30] Di Stefano C, Ferro V, Mirabile S. Comparison between grain-size analyses using laser diffraction and sedimentation methods. Biosystems Engin. 2010;106:205-215. DOI: 10.1016/j.biosystemseng.2010.03.013.10.1016/j.biosystemseng.2010.03.013Search in Google Scholar

[31] Taubner H, Roth B, Tippkötter R. Determination of soil texture: Comparison of the sedimentation method and the laser-diffraction analysis. J Plant Nutr Soil Sci. 2009;172:161-171. DOI: 10.1002/jpln.200800085.10.1002/jpln.200800085Search in Google Scholar

[32] Ryżak M, Bieganowski A. Determination of particle size distribution of soil using laser diffraction - comparison with areometric method. Int Agrophys. 2010;24:177-181.Search in Google Scholar

[33] de Boer GBJ, de Weerd C, Thoenes D, Goossens HWJ. Part Charact. 1987;4:14-19.10.1002/ppsc.19870040104Search in Google Scholar

[34] Agrawal YC, McCave IN, Riley JB. Laser diffraction size analysis in Syvitski J.P.M. (ed.) Principles, methods and application of particle size analysis. Cambridge: Cambridge University Press; 1991.10.1017/CBO9780511626142.012Search in Google Scholar

[35] Biggs CA, Lant PA. Activated sludge flocculation: on-line determination of floc size and the effect of shear. Water Res. 2000;34(9):2542-2550. DOI: 10.1016/S0043-1354(99)00431-5.10.1016/S0043-1354(99)00431-5Search in Google Scholar

[36] Nopens I, Biggs CA, De Clerq B, Govoreanu R, Wilen BM, Lant P, Vanrolleghem PA. Modeling the activated sludge flocculation process combining laser light diffraction particle sizing and population balance modelling (PBM). Water Sci Technol. 2002;45(6):41-49.10.2166/wst.2002.0092Search in Google Scholar

[37] Guellil A, Thomas F, Block JC, Bersillon L, Ginestet P. Transfer of organic matter between wastewater and activated sludge flocs. Water Res. 2001;35(1):143-150. DOI: 10.1016/S0043-1354(00)00240-2.10.1016/S0043-1354(00)00240-2Search in Google Scholar

[38] Houghton JI, Burgess JE, Stephenson T. Off-line particle size analysis of digested sludge. Water Res. 2002;36:4643-4647. DOI: 10.1016/S0043-1354(02)00157-4.10.1016/S0043-1354(02)00157-4Search in Google Scholar

[39] Wilen BM, Balmer P. The effect of dissolved oxygen concentration on the structure, size and size distribution of activated sludge flocs. Water Res. 1999;33(2):391-400. DOI: 10.1016/S0043-1354(98)00208-5.10.1016/S0043-1354(98)00208-5Search in Google Scholar

[40] Govoreanu R, Saveyn H, Van der Meeren P, Vanrolleghem PA. Simultaneous determiatnion of activated sludge floc size distribution by different techniques. Water Sci Technol. 2004;50(12):39-46.10.2166/wst.2004.0693Search in Google Scholar

[41] Weiss EL, Frock HN. Rapid analysis of particle size distributions by laser light scattering. Powder Technol. 1976;14(2):287-293. DOI: 10.1016/0032-5910(76)80077-0.10.1016/0032-5910(76)80077-0Search in Google Scholar

[42] ISO 13320 (2009). Particle size analysis - laser diffraction methods.Search in Google Scholar

[43] Beuselinck L, Govers G, Poesen J, Degraer G, Froyen L. Grain-size analysis by laser diffractometry: comparison with sieve-pipette method. Catena. 1998;32:193-208. DOI: 10.1016/S0341-8162(98)00051-4.10.1016/S0341-8162(98)00051-4Search in Google Scholar

[44] Sperazza M, Moore JN, Hendrix MS. High-resolution particle size analysis of naturally occurring very finegrained sediment through laser diffractometry. J Sediment Res. 2004;74(5):736-743. DOI: 10.1306/031104740736.10.1306/031104740736Search in Google Scholar

[45] Arriaga FJ, Lowery B, Mays MD. A fast method for determining soil particle size distribution using a laser instrument. Soil Sci. 2006;171(9):663-674. DOI: 10.1097/01.ss.0000228056.92839.88.10.1097/01.ss.0000228056.92839.88Search in Google Scholar

[46] Ryżak M, Bieganowski A. Methodological aspects of determining soil particle size distribution using the laser diffraction method. J. Plant Nutr. Soil Sci. 2011;174(4):624-633. DOI: 10.1002/jpln.201000255.10.1002/jpln.201000255Search in Google Scholar

[47] Malvern Operators Guide, Malvern Instruments Ltd., Malvern, UK 1999.Search in Google Scholar

[48] Bieganowski A, Ryżak M, Witkowska-Walczak B. Determination of soil aggregate disintegration dynamics using laser diffraction. Clay Miner. 2010;45:23-34. DOI: 10.1180/claymin.2010.045.1.23.10.1180/claymin.2010.045.1.23Search in Google Scholar

[49] Sochan A, Bieganowski A, Ryżak M, Dobrowolski R, Bartmiński P. Comparison of soil texture determined by two dispersion units of Mastersizer 2000. Int. Agrophys. 2012;26:99-102. DOI: 10.2478/v10247-012-0015-9.10.2478/v10247-012-0015-9Search in Google Scholar

ISSN:
1898-6196
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Nachhaltige Chemie, Technik, Elektrotechnik, Energietechnik, Biologie, Ökologie