Uneingeschränkter Zugang

Control of Landfill Gases Emission with Particular Emphasis on Btex


Zitieren

Lindzen RS. Global warming: The origin and nature of the alleged scientific consensus. Problems of Sustainable Development. 2010;5:13-28.Search in Google Scholar

Sarkis J. Convincing industry that is value in environmentally supply chains. Problems of Sustainable Development. 2009;2:101-105.Search in Google Scholar

Venkatesh G. Triple bottom line approach to individual and global sustainability. Problems of Sustainable Development. 2010;5:29-37.Search in Google Scholar

Hueting R. Environmentally Sustainable National Income and Other Ways to Improve Information about Growth. Problems of Sustainable Development. 2011;6:31-46.Search in Google Scholar

Hoedl E. Europe 2020 Strategy and European Recovery. Problems of Sustainable Development. 2011;6:11-18.Search in Google Scholar

Udo V, Pawłowski A. Human Progress Towards Equitable Sustainable Development - part II: Empirical Exploration. Problems of Sustainable Development. 2011;6:33-62.Search in Google Scholar

Dołęgowska S. Biofuels - a step towards sustainable development. Problems of Sustainable Development. 2009;4:117-121.Search in Google Scholar

Golomb D. Emission reduction of greenhouse gases: emission quotas or mandated control technologies. Problems of Sustainable Development. 2008;3:23-25.Search in Google Scholar

Lewicki R. Monitoring gazu wysypiskowego. Łódź: OBREM; 1991.Search in Google Scholar

Pawłowska M. Możliwość zmniejszenia emisji metanu z wysypisk na drodze jego biochemicznego utleniania w rekultywacyjnym nadkładzie glebowym - badania modelowe. Lublin: Wydawnictwo Politechniki Lubelskiej; 1999.Search in Google Scholar

Czerwiński J, Pawłowska M. Emissions of trace compounds from selected municipal landfills in Poland. In: Pawłowski L, Dudzińska M, Pawłowski A, editors. Environmental Engineering III. London: Taylor & Francis Group; 2010.10.1201/b10566-69Search in Google Scholar

Le Mer J, Roger P. Production, oxidation, emission and consumption of methane by soils: A review. Eur J Soil Biol. 2011;37:25-50. DOI: 10.1016/S1164-5563(01)01067-6.10.1016/S1164-5563(01)01067-6Search in Google Scholar

Reichenauer TG, Watzinger A, Riesing J, Gerzabek MH. Impact of different plants on the gas profile of a landfill cover. Waste Manage. 2011;31:843-853.10.1016/j.wasman.2010.08.027Search in Google Scholar

Glatzel S, Stahr K. The trace gas budget of differently managed grassland using the Hohenheim chamber. In: Proceedings of the 16th World Congress of Soil Science. Montpellier/France; 1998.Search in Google Scholar

Semrau JD, Chistoserdov A, Lebron J, Costello A, Davagnino J, Kenna E, Holmes AJ, Finch R, Murrell JC, Lidstrom ME. Particulate methane monooxygenase genes in methanotrophs. J. Bacteriol. 1995;177:3071-3079.10.1128/jb.177.11.3071-3079.1995Search in Google Scholar

Stępniewski W, Pawłowska M. Preliminary short-term test of methane oxidation capacity in porous materials - evaluation of reliability. In: Cygas D, Froehner KD, editors. Environmental Engineering. The 7th International Conference, vol. I Environmental Protection; Vilnus: 2008.Search in Google Scholar

EPA 1997 Compilation of Air Pollutant Emissions Factors Volume 1: Stationary Point and Area Sources, Document No. AP-42, Fifth Edition with Supplements, Section 2.4 Municipal Solid Waste Landfills. Washington, DC: U. S. Environmental Protection Agency (US EPA).Search in Google Scholar

EPA 1995 U. S. Environmental Protection Agency. Compilation of Air Pollutant Emissions Factors, AP-42, Fifth Addition, Volume 1: Stationary Point and Area Sources. January 1995. http://www.epa.gov/ttn/chief/ap42/ch02/Search in Google Scholar

Tchobanoglous G, Theisen H, Vigil S. Integrated Solid Waste Management, Engineering Principles and Management Issues. New York: McGraw-Hill; 1993.Search in Google Scholar

Williams PT. Waste Treatment and Disposal. Chichester, UK: John Wiley&Sons, Ltd; 2005.10.1002/0470012668Search in Google Scholar

Chanton J, Liptay K. Seasonal variation in methane oxidation in a landfill cover soil as determined by an in situ stable isotope technique. Global Biogeochem Cycles. 2000;14:51-60. DOI: 10.1029/1999GB900087.10.1029/1999GB900087Search in Google Scholar

Gebert J, Gröngröft A, Miehlich G. Kinetics of microbial landfill methane oxidation in biofilters. Waste Manage. 2003;23:609-619. DOI: 10.1016/S0956-053X(03)00105-3.10.1016/S0956-053X(03)00105-3Search in Google Scholar

Hilger H, Humer M. Biotic landfill cover treatments for mitigating methane emissions. Environ Monit Assess. 2003;84:71-84. DOI: 10.1023/A:1022878830252.10.1023/A:1022878830252Search in Google Scholar

Huber-Humer M, Gebert J, Hilger H. Biotic systems to mitigate landfill methane emissions. Waste Manage Res. 2008;26:33-46. DOI: 10.1177/0734242X07087977.10.1177/0734242X0708797718338700Search in Google Scholar

Jugnia LB, Cabral AR, Greer CW. Biotic methane oxidation within an instrumented experimental landfill cover. Ecol. Eng. 2008;33:102-109. DOI: 10.1016/j.ecoleng.2008.02.003.10.1016/j.ecoleng.2008.02.003Search in Google Scholar

Perdikea K, Mehrotra AK, Hettiaratchi JPA. Study of thin biocovers (TBC) for oxidizing uncaptured methane emissions in bioreactor landfills. Waste Manage. 2008;28:1364-1374. DOI: 10.1016/j.wasman.2007.06.017.10.1016/j.wasman.2007.06.017Search in Google Scholar

Scheutz C. Attenuation of methane and trace organics in landfill soil covers [Ph.D Thesis]. Lyngby: Technical University of Denmark; 2002.Search in Google Scholar

Stępniewski W, Pawłowska M. A Possibility to Reduce Methane Emission from Landfills by Its Oxidation in the Soil Cover. Chemistry from the Protection of the Environment 2. Environmental Science Research, Vol. 51. New York: Plenum Press; 1996.10.1007/978-1-4613-0405-0_9Search in Google Scholar

Pawłowska M. Efficiency of microbial oxidation of methane in biofilter. In: Pawłowski L, Dudzińska MR, Pawłowski A, editors. Environmental Engineering, Boca Raton: CRC-Press Taylor&Francis Group; 2010.10.1201/b10566-66Search in Google Scholar

Kwapisz E. Pathways of aerobic petroleum oil hydrocarbons biodegradation, Biotechnologia. 2006;2:166-188.Search in Google Scholar

Greń I, Guzik U, Wojcieszyńska D, Łabużek S. Molecular basis for the degradation of aromatic xenobiotic compounds. Biotechnologia. 2008;2:58-67.Search in Google Scholar

Schlegel HG. Mikrobiologia ogólna. Warszawa: Wyd. Nauk. PWN; 2003.Search in Google Scholar

Smith MR. The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation. 1990;1:191-206. DOI: 10.1007/BF0005883610.1007/BF00058836Search in Google Scholar

Fritsche W, Hofrichter M. Aerobic Degradation by Microorganisms. In: Rehm HJ, Reed G, editors. Biotechnology Set, Second Edition. Weinheim, Germany: Wiley-VCH Verlag GmbH; 2008.Search in Google Scholar

Cao B, Nagarajan K, Loh KC. Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol. 2009;85:207-228. DOI: 10.1007/s00253-009-2192-4.10.1007/s00253-009-2192-4Search in Google Scholar

Yadav JS, Reddy CA. Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol. 1993;59:756-762.10.1128/aem.59.3.756-762.1993Search in Google Scholar

Chen CI, Taylor RT. Thermophilic biodegradation of BTEX by two Thermus species. Biotechnol Bioen. 1995;48:614-624. DOI: 10.1002/bit.260480609.10.1002/bit.260480609Search in Google Scholar

Deeb RA, Alvarez-Cohen L. Temperature effects and substrate interactions during the aerobic transformation of BTEX mixtures by toluene enriched consortia and Rhodococcus rhodochrous. Biotechnol Bioen. 1999;62:526-536. DOI: 10.1002/(SICI)1097-0290(19990305)62:5<526::AID-BIT4>3.0.CO;2-8.10.1002/(SICI)1097-0290(19990305)62:5<526::AID-BIT4>3.0.CO;2-8Search in Google Scholar

Prenafeta-Boldu FX, Vervoort J, Grotenhuis JTC, van Groenestijn JW. Substrate interactions during the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons by the fugus Cladophialophora sp. strain T1. Appl Environ Microbiol. 2002;68:2660-2665.Search in Google Scholar

Alvarez PJ, Vogel TM. Substrate interactions of benzene, toluene, and paraxylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Appl Environ Microbiol. 1991;57:2981-2985.10.1128/aem.57.10.2981-2985.1991Search in Google Scholar

Chang MK, Voice TC, Criddle CS. Kinetics of competitive inhibition and cometabolism in the biodegradation of benzene, toluene, and p-xylene by two Pseudomonas isolates. Biotechnol Bioen. 1993;41:1057-1065. DOI: 10.1002/bit.260411108.10.1002/bit.260411108Search in Google Scholar

Oh YS, Sharafdeen Z, Baltizs BC, Bartha R. Interactions between benzene, toluene, and p-xylene (BTX) during their biodegradation. Biotechnol Bioeng. 1994;44:533-538. DOI: 10.1002/bit.260440417.10.1002/bit.260440417Search in Google Scholar

Chang BV, Wu WB, Yuan SY. Biodegradation of benzene, toluene, and other aromatic compounds by Pseudomonas sp. D8. Chemosphere. 1997;35:2807-2815. DOI: 10.1016/S0045-6535(97)00281-6.10.1016/S0045-6535(97)00281-6Search in Google Scholar

Demir G. Degradation of toluene and benzene by Trametes versicolor. J Environ Biol. 2004;25:19-25.Search in Google Scholar

Estevez E, Veiga MC, Kennes C. Biodegradation of toluene by the new fungal isolates Paecilomyces variotii and Exophiala oligosperma. J Ind Microbiol Biot. 2005;32:33-37. DOI: 10.1007/s10295-004-0203-0.10.1007/s10295-004-0203-015702332Search in Google Scholar

Guzik U, Wojcieszyńska D, Hupert-Kocurek K. Microbiological degradation of aromatic compounds in anoxic condition. Postępy Mikrobiologii. 2010;49:217-226.Search in Google Scholar

Heider J, Fuchs G. Microbial anaerobic aromatic metabolizm. Anaerobe. 1997;3:1-22.10.1006/anae.1997.007316887557Search in Google Scholar

Coates JD. Chakraborty R. Lack JG, O'Connor SM, Cole KA, Bender KS, Achenbach LA. Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two sytains of Dechloromonas. Nature. 2001; 411: 1039-1043.10.1038/3508254511429602Search in Google Scholar

Rooney-Varga JN, Anderson RT, Fraga JL, Ringelberg D, Lovley DR. Microbial communities associated with anaerobic benzene degradation in petroleum-contaminated aquifer. Appl Environ Microbiol. 1999;65:3056-3063.10.1128/AEM.65.7.3056-3063.19999145610388703Search in Google Scholar

Chakraborty R, Coates JD. Anaerobic degradation of monoaromatic hydrocarbons. Appl Microbiol. Biotechnol. 2004;64:437-446. DOI: 10.1007/s00253-003-1526-x.10.1007/s00253-003-1526-x14735323Search in Google Scholar

Lovley DR, Baedecker MJ, Lonergan DJ, Cozzarelli IM, Philips EJP, Siegel DI. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature. 1998;339:297-300.10.1038/339297a0Search in Google Scholar

Ball HA, Johnson HA, Reinhard M, Spormann AM. Initial reactions in anaerobic ethylbenzene oxidation by a denitrifying bacterium, strain EB1. J. Bacteriol. 1996;178:5755-5761.10.1128/jb.178.19.5755-5761.19961784168824622Search in Google Scholar

Rabus R, Widdel F. Anaerobic degradation of ethylbenzene and other aromatic-hydrocarbons by new denitrifying bacteria. Arch Microbiol. 1995;163:96-103. DOI: 10.1007/BF00381782.10.1007/BF003817827710331Search in Google Scholar

Harms G, Zengler K, Rabus R, Aeckersberg F, Minz D, Rossello-Mora R, Widdel F. Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl Environ Microbiol. 1999;65:999-1004.10.1128/AEM.65.3.999-1004.1999Search in Google Scholar

Hess A, Zarda B, Hahn D, Häner A, Stax D, Höhener P, Zeyer J. In situ analysis of denitrifyin toluene- and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column. Appl Environ Microbiol. 1997;63:2136-2141.10.1128/aem.63.6.2136-2141.1997Search in Google Scholar

IPPC Fourth Assessment Report: Climate Change; 2007.Search in Google Scholar

Jiang H, Chen Y, Jiang P, Zhang C, Smith J, Murrell JC, Xing XH. Methanotrophs: Multifunctional bacteria with promising application in environmental bioengineering. Biochem Eng J. 2010;49:277-288. DOI: 10.1016/j.bej.2010.01.003.10.1016/j.bej.2010.01.003Search in Google Scholar

Borin S, Marzorati M, Brusetti L, Zilli M, Cherif H, Abdennaceur H, Converti A, Sorlini C, Daffonchio D. Microbial succession in a compost-packed biofilter treating benzene-contaminated air. Biodegradation. 2006; 17:79-89. DOI: 10.1007/s10532-005-7565-5.10.1007/s10532-005-7565-5Search in Google Scholar

Zdeb M, Pawłowska M. An influence of temperature on microbial removal of hydrogen sulphide from biogas. Roczn Ochr Środow, Koszalin; 2009:1235-1243.Search in Google Scholar

Pawłowska M. Usuwanie metanu z gazu składowiskowego w biofiltrach metanotroficznych. Monografie Komitetu Inżynierii Środowiska PAN; Lublin; 2010.Search in Google Scholar

Mallakin A, Ward OP. Degradation of BTEX compounds in liquid media and in peat biofilters. J Ind Microbiol. 1996;16:309-318. DOI: 10.1007/BF01570040.10.1007/BF01570040Search in Google Scholar

Stępniewski W, Pawłowska M. Biofilters and biocovers of landfills - Effect of biophysical factors on their efficency. In: Alamgir M, Hossain QS, Rafizul IM, Mohiuddin KM, Bari QH. editors. Kbulna Proceedings of the National Seminar on Solid Waste Management - WasteSafe, Bangladesz; 2008.Search in Google Scholar

Łebkowska M, Tabernacka A. Biologiczne metody usuwania zanieczyszczeń gazowych metodą biofiltracji. Biotechnologia. 2000;3:141-150.Search in Google Scholar

Pawłowska M, Rożej A, Stępniewski W. Effect of bed properties on methane removal potential in aerated biofilter - model studies. Waste Manage. 2010;56:8-17. DOI: 10.1016/j.wasman.2010.10.005.10.1016/j.wasman.2010.10.005Search in Google Scholar

Namkoong W, Park JS, VanderGheynst JS. Biofiltration of gasoline vapor by compost media. Environ Pollut. 2003;121:181-187. DOI: 10.1016/S0269-7491(02)00223-3.10.1016/S0269-7491(02)00223-3Search in Google Scholar

Seed LP, Corsi RL. Biofiltration of BTEX Contaminated Streams: Laboratory Studies. In: Proc. of 87th Annual Meeting and Exibition of the AWMA. A&WMA, Pittsburgh, PA; 1994.Search in Google Scholar

Ergas SJ, Schroeder ED, Chang DPY, Morton RL. Control of volatile organic compound emissions using a compost biofilter. Water Environ Research. 1995;67:816-821. DOI: 10.2175/106143095X131736.10.2175/106143095X131736Search in Google Scholar

Tahraoui K, Rho D. Biodegradation of BTEX vapors in a compost medium biofilter. Compost Sci Utilization. 1998;6:13-21.10.1080/1065657X.1998.10701917Search in Google Scholar

Wright WF, Schroeder ED, Chang DPY, Romstad K. Performance of a pilot-scale compost biofilter treating gasoline vapor. J Environ Eng. 1997:123,547-555. DOI:10.1061/(ASCE)0733-9372(1997)123:6(547).10.1061/(ASCE)0733-9372(1997)123:6(547)Search in Google Scholar

Thompson D, Sterne L, Bell J, Parker W, Lye A. Pilot scale investigation of sustainable BTEX removal with a compost biofilter. In: Proc. of 89th Annual Meeting and Exhibition. A&WMA, Nashville; 1996.Search in Google Scholar

Abumaizar RJ, Kocher W, Smith EH. Biofiltration of BTEX contaminated air streams using compost-activated carbon filter media. J Hazard Mater. 1998;60:111-126. DOI:10.1016/S0304-3894(97)00046-0.10.1016/S0304-3894(97)00046-0Search in Google Scholar

ISSN:
1898-6196
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Nachhaltige Chemie, Technik, Elektrotechnik, Energietechnik, Biologie, Ökologie