Phase transition in a system of random sparse Boolean equations
Online veröffentlicht: 12. Nov. 2012
Seitenbereich: 93 - 105
DOI: https://doi.org/10.2478/v10127-010-0008-7
Schlüsselwörter
This content is open access.
Many problems, including algebraic cryptanalysis, can be transformed to a problem of solving a (large) system of sparse Boolean equations. In this article we study 2 algorithms that can be used to remove some redundancy from such a system: Agreeing, and Syllogism method. Combined with appropriate guessing strategies, these methods can be used to solve the whole system of equations. We show that a phase transition occurs in the initial reduction of the randomly generated system of equations. When the number of (partial) solutions in each equation of the system is binomially distributed with probability of partial solution