Uneingeschränkter Zugang

Surface modifications of ti and its alloys


Zitieren

Liu X., Chu P. K., Ding Ch.: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering, vol. 47 (2004) 49-121.Search in Google Scholar

Molitor P., Barron V., Young T.: Surface treatment of titanium for adhesive and adhesives. 21 (2) (2001) 129-136.Search in Google Scholar

Citeau A., Guicheux J., Vinatier C., Layrolle P., Nguyen T. P., Pilet P., Daculsi G.: In vitro biological effects of titanium rough surface obtained by calcium phosphate grid blasting. Biomaterials 26 (2005) 157-165.Search in Google Scholar

Liang C. Y., Yang X. J., Wei Q., Cui Z. D.: Comparison of calcium phosphate coatings formed on femtosecond laser-induced and sand-blasted titanium. Applied Surface Science 255 (2008) 515-518.Search in Google Scholar

Gbureck U., Masten A., Probst J., Thull R.: Tribochemical structuring and coating of implant metal surfaces with titanium oxide and hydroxyapatite layers. Materials Science and Engineering C 23 (2003) 461-465.Search in Google Scholar

Hryniewicz T., Rokicki R., Rokosz K.: Corrosion and surface characterization of titanium biomaterial after magnetoelectropolishing. Surface & Coatings Technology 203 (2009) 1508-1515.Search in Google Scholar

Strnad J., Strnad Z., Sestak J.: Physico-chemical properties and healing capacity of potentially bioactive titanium surface. Journal of Thermal Analysis and Calorimetry, vol. 88 (3) (2007) 775-779.Search in Google Scholar

Mohammadi Z., Ziaei-Moayyed A. A., Sheikh-Mehdi Mesgar A.: Grit blasting of Ti-6Al-4V alloy: Optimization and its effect on adhesion strength of plasma-sprayed hydroxyapatite coatings. Journal of Materials Processing Technology 194 (2007) 15-23.Search in Google Scholar

Lu X., Zhao Z., Leng Y.: Biomimetic calcium phosphate coatings on nitric-acid-treated titanium surfaces. Materials Science and Engineering C 27 (2007) 700-708.Search in Google Scholar

Yousefpour M., Afshar A., Chen J., Xingdong Z.: Bioactive layer formation on alkaline-acid treated titanium in simulated body fluid. Materials and Design 28 (2007) 2154-2159.Search in Google Scholar

Pattanayak D. K., Kawai T., Matsushita T., Takadama H., Nakamura T., Kokubo T.: Effect of HCl concentrations on apatie-forming ability of NaOH-HCl - and heat-treated titanium metal. J Materials Science: Materials in Medicine (2009) published on-line: http://www.springerlink.com/content/m7l108m885m83056/Search in Google Scholar

Assis S. L., Costa I.: The Effect of Hydrogen Peroxide on the Electrochemical Behaviour of Ti-13Nb-13Zr Alloy in Hanks' Solution. Materials Research 9 (4) (2006) 425-429.Search in Google Scholar

Han J. Y., Zu Z. T., Zhou L.: Hydroxyapatite/titania composite bioactivity coating processed by sol-gel method. Applied Surface Science 255 (2008) 455-458.Search in Google Scholar

Nguyen H. Q., Deporter D. A., Pilliar R. M., Valiquette N., Yakubovich R.: The effect of sol-gel formed calcium phosphate coatings on bone ingrowth and osteoconductivity of porous-surfaced Ti alloy implants. Biomaterials 25(5) (2004) 865-876.Search in Google Scholar

Wierzchoń T., Czarnowska E., Krupa D.: Inżynieria powierzchni w wytwarzaniu biomateriałów tytanowych. Oficyna Wyd. Politechniki Warszawskiej. Warszawa 2004.Search in Google Scholar

Wilks R. G., Santos E., Kurmaev E. Z., Yablonskikh M. V., Moewes A., Kuromoto N. K., Soares G. A.: Characterization of oxide layers fordem on electrochemically treated Ti by Rusing soft X-ray absorption measurements. J Electron Spectroscopy and Related Phenomena 169 (2009) 46-50.Search in Google Scholar

Diamanti M. V., Pedeferri M. P.: Effect of anodic oxidation parameters on the titanium oxides formation. Corrosion Science 49 (2007) 939-948.Search in Google Scholar

Cui X., Kim H.-M., Kawashita M., Wang L., Xiong T., Kokubo T., Nakamura T.: Preparation of bioactive titania films on titanium metal via anodic oxidation. Dental materials 25 (2009) 80-86.Search in Google Scholar

Bauer S., Park J., Mark K., Schmuki P.: Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes. Acta Biomaterialia 4 (2008) 1576-1582.Search in Google Scholar

Goto T.: Surface coating technology for biomaterials - morphology and nonostructure control. International Congress Series 1284 (2005) 248-256.Search in Google Scholar

Sevilla P., Aparicio C., Planell J. A., Gil F. J.: Comparison of the mechanical properties between tantalum and nickel-titanium foams implant materials for bone ingrowth applications. J Alloys and Compounds 439 (2007) 67-73.Search in Google Scholar

Trommer R. M., Santos L. A., Bergmann C. P.: Alternative technique for hydroxyapatite coatings. Surface & Coatings Technology 201 (2007) 9587-9593.10.1016/j.surfcoat.2007.04.028Search in Google Scholar

Kim D. S., Han S. J., Kwak S.-Y.: Synthesis and photocatalytic activity of mesoporous TiO2 with the surface area, crystallite size, and pore size. J Colloid and Interface Science 316 (2007) 85-91.Search in Google Scholar

Baram N., Starosvetsky D., Starosvetsky J., Epshtein M., Armon R., Ein-Eli Y.: Enhanced inactivation of E. coli bacteria using immobilized porous TiO2 photoelectrocatalysis. Electrochimica Acta 54 (2009) 3381-3386.Search in Google Scholar

Lewis G., McVay B.: Effect of Thermal Spray Process for Deposition Hydroxyapatite Coating on a Titanium Alloy on its Fatigue Performance. 17th Southern Biomedical Engineering Conf (1998) 119.Search in Google Scholar

Gledhill H. C., Turner I. G., Doyle C.: In vitro dissolution behavior of two morphologically different thermally sprayed hydroxyapatite coatings. Biomaterials 22 (2001) 695-700.Search in Google Scholar

Li H., Khor K. A.: Characteristics of the nanostructures in thermal sprayed hydroxyapatite coatings and their influence on coating properties. Surface & Coatings Technology 201 (2006) 2147-2154.Search in Google Scholar

Lima R. S., Khor K. A., Li H., Cheang P., Marple B. R.: HVOF spraying on nanostructured hydroxyapatite for biomedical applications. Materials Science and Engineering A 396 (2005) 181-187.Search in Google Scholar

Goana M., Lima R. S., Marple B. R.: Influence of particle temperature and velocity on the microstructure and mechanical behavior of high velocity oxy-fuel (HVOF) - sprayed nanostructured titania coatings. J Materials Processing Technology 198 (2008) 426-435.Search in Google Scholar

Hoseini M., Jedenmalm A., Boldizar A.: Tribological investigation of coatings for artificial joints. Wear 264 (2008) 958-966.Search in Google Scholar

Chiu S-M., Chen Z-S., Yang K-Y., Hsu Y-L., Gan D.: Photocatalytic activity of moped TiO2 coatings prepared by sputtering deposition. J Materials Processing Technology 192-193 (2007) 60-67.Search in Google Scholar

Krupa D., Baszkiewicz J., Rajchel B., Barcz A., Sobczak J. W., Biliński A., Borowski T.: Effect of calcium-ion implantation on the corrosion resistance and bioactivity of the Ti6Al4V Allom. Vacuum 81 (2007) 1310-1313.Search in Google Scholar

Xie Y., Liu X., Huang A., Ding Ch., Chu P. K.: Improvement of surface bioactivity on titanium by water and hydrogen plasma immersion ion implantation. Biomaterials 26 (2005) 6129-6135.Search in Google Scholar

Jo Y. J., Lee C. M., Jang H. S., Lee N. S., Suk J.-H., Lee W. H.: Mechanical properties of fully porous and porous-surfaced Ti-6Al-4V implants fabricated by electro-discharge-sintering. J Materials Processing Technology 194 (2007) 121-125.Search in Google Scholar

An Y. B., Lee W. H.: Synthesis of porous titanium implants by environmental-electro-discharge-sintering process. Materials Chemistry and Physics 95 (2006) 242-247.Search in Google Scholar

Lausmaa J. in Brunette D. M., Tengvall P., Textor M., Thomsen P. (Eds.): Titanium in Medicine, Springer, Berlin (2001) 231-266.10.1007/978-3-642-56486-4_8Search in Google Scholar

Albrektsson T., Wennerberg A.: Part 1 - review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. International J Prosthodontosis. 17(5) (2004) 536-543.Search in Google Scholar

Cook S. D., Thomas K. A., Kay J. F., Jarcho M.: Hydroxyapatite-coated titanium for orthopedic implant applications. Clinical Orthopaedic and Related Research (1988) 225-243.Search in Google Scholar

Ronald H. J., Ellingsen J. E.: Effect of micro-roughness produced by TiO2 blasting-tensile testing of bone attachment by using coin-shaped implants. Biomaterials 23 (2002) 4211-4219.Search in Google Scholar

Fini M., Savarino L., Aldini N. N., Martini L., Giaveresi G., Rizzi G., Martini D., Ruggeri A., Giunti A., Giardino R.: Biomechanical and histomorphometric investigation on two morphologically differing titanium surfaces with and without frluorohydroxyapatite coating: an experimental study in sheep tibiae. Biomaterials 24 (2003) 3183-3192.Search in Google Scholar

Andrade M. C., Bastos I. N., Filgueiras M. R. T., Ogasawara T.: Behavior of hydroxyapatite coated titanium as a function of NaOH pretreatment. Revista Cientifica Internacional, 1(3) (2008) 1-16.Search in Google Scholar

Conforto E., Caillard D., Muller L., Muller F. A.: The structure of titanate nanobelts used as seeds for the nucleation of hydroxyapatite at the surface of titanium implants. Acta Biomaterialia 4 (2008) 1934-1943.Search in Google Scholar

Ho W-F., Lai Ch-H., Hsu H-Ch., Wu S-Ch.: Surface modification of low-modulus Ti-7.5Mo Allom treated with aqueous NaOH. Surface & Coatings Technology 203 (2009) 3142-3150.Search in Google Scholar

Kim H. M., Miyaji F., Kokubo T., Nakamura T.: Preparation of bioactive Ti and its alloys via Simple chemical surface treatment. J Biomedical Materials Research, 32 (3) (1996) 409-417.Search in Google Scholar

Lu X., Leng Y., Zhang X., Xu J., Qin L., Chan Ch-W.: Comparative study of osteoconduction on micromachined and alkali-treated titanium alloy surfaces in vitro and in vivo. Biomaterials 26 (2005) 1793-1801.Search in Google Scholar

Nebe J. B., Muller L., Luthen F., Ewald A., Bergemann C., Conforto E., Muller F. A.: Osteoblast response to biomimetically altered titanium surfaces. Acta Biomaterialia 4 (2008) 1985-1995.Search in Google Scholar

Takeuchi M., Abe Y., Yoshida Y., Nakayama Y., Okazaki M., Akagawa Y.: Acid pretreatment of titanium implants. Biomaterials 24 (10) (2003) 1821-1827.Search in Google Scholar

Tas A. C.: Formation of calcium phosphate whiskers in hydrogen peroxide (H2O2) solutions AT 90°C. J Americal Ceramics Society 90(8) (2007) 2358-2362.Search in Google Scholar

Shukla A. K., Balasubramaniam R.: Effect of surface treatment on electrochemical behavior of CP Ti, Ti-6Al-4V and Ti-13Nb-13Zr alloys in simulated human body fluid. Corrosion Science 48 (2006) 1696-1720.Search in Google Scholar

Oh S-H., Finones R. R., Daraio C., Chen L-H., Jin S.: Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 26 (2005) 4938-4943.Search in Google Scholar

Sobieszczyk S., Zieliński A.: Coatings in Arthroplasty. Advances in Materials Science, vol. 8, no 4 (2008) 35-54.Search in Google Scholar

Li P., Groot K.: A calcium phosphate formation within sol-gel-prepared titania in vitro and in vivo. J Biomedical Science Research 27 (1993) 1495-1500.Search in Google Scholar

Wen C. E., Xu W., Hu W. Y., Hodgson P. D.: Hydroxyapatite/titania sol-gel coatings on titanium-zirconium alloy for biomedical applications. Acta Biomaterialia 3 (2007) 403-410.Search in Google Scholar

Ben-Nissan B., Milev A., Vago R.: Morphology of sol-gel derived nano-coated coralline hydroxyapatite. Biomaterials 25 (2004) 4971-4975.Search in Google Scholar

Maiyalagan T., Viswanathan B., Varadaraju U. V.: Fabrication and characterization of uniform TiO2 nanotube arrays by sol-gel template method. Bull. Mater. Sci., vol. 29 (7) (2006) 705-708.Search in Google Scholar

Kim H-W., Koh Y-H., Li L-H., Lee S., Kim H-E.: Hydroxyapatite coating on titanium substrate with titania Buffet layer processed by sol-gel method Biomaterials 25 (2004) 2533-2538.Search in Google Scholar

Feng B., Chu X., Chen J., Wang J., Lu X., Weng J.: Hydroxyapatite coating on titanium surface with titania nanotube layer and its bond strength to substrate. J Porous Materials (2009) published on-line:http://www.springerlink.com/content/793488162u28q61t/Search in Google Scholar

Narayanan R., Seshadri S. K.: Phosphoric acid anodization of Ti-6Al-4V - Structural and corrosion aspects. Corrosion Science 49 (2007) 542-558.Search in Google Scholar

Oh S., Jin S.: Titanium oxide nanotubes with controlled morphology for enhanced bone growth. Materials Science and Engineering C 26 (2006) 1301-1306.Search in Google Scholar

Wei D., Zhou Y., Yang Ch.: Characteristic, cell response and apatite-induction ability of microarc oxidized TiO2-based coating containing P on Ti6Al4V before and after chemical-treatment and dehydration. Ceramics International 35 (2009) 2545-2554.Search in Google Scholar

Sun J., Han Y., Huang X.: Hydroxyaptite coatings prepared by micro-arc oxidation in Ca- an P-containing electrolyte. Surface & Coatings Technology 201 (2007) 5655-5658.Search in Google Scholar

Wei D., Zhou Y., Jia D., Wang J.: Effect of heat treatment on the structure and in vitro bioactivity of microarc-oxidized (MAO) titania coatings containing Ca P ions. Surface & Coatings Technology 201 (2007) 8723-8729.Search in Google Scholar

Park I. S., Woo T. G., Jeon W. Y., Park H. H., Lee M. H., Bae T. S., Seol K. W.: Surface characteristics of titanium anodized in the four different types of electrolyte. Electrochimica Acta 53 (2007) 863-870.Search in Google Scholar

Nolan M. G.: Design and commissioning of an off-line APCVD coater to deposit titanium dioxide self-cleaning films. SIMTech technical reports, 9 (2) (2008) 75-80.Search in Google Scholar

Romanuja N., Levy R. A., Dharmadhikari S. N., Ramos E., Pearce W., Menasian S. C., Schamberger P. C., Collins C. C.: Synthesis and characterization of low pressure chemically vapor deposited titanium nitride films using TiCl4 and NH3. Materials Letters 57(2) (2002) 261-269.Search in Google Scholar

Cruz N. C., Rangel E. C., Wang J., Trasferetti B. C., Daranzo C. U., Castro S. G., Morges M. A. B.: Properties of titanium oxide films obtained by PECVD. Surface & Coating Technology 126 (2-3) (2000) 123-130.Search in Google Scholar

Jóźwik K., Karczemska A.: The new generation Ti6Al4V artificial heart valve with nanocrystalline diamond coating on the ring and with Derlin disc after long-term mechanical fatigue examination. Diamond & Related Materials 16 (2007) 1004-1009.Search in Google Scholar

Kugler C., Fink M., Laimer J., Stori H.: Dynamics of pulsed d.c. discharges used for PACVD - effect of additional high voltage pulses. Surface & Coatings Technology 142-144 (2001) 424-428.Search in Google Scholar

Tosatti S., Michel R., Textor M., Spencer N. D.: Self-assembled monolayers of dodecyl and hydroxyl-dodecyl phosphates on both smooth and rough titanium and titanium oxide surfaces. Langmuir 18(9) (2002) 3537-3548.Search in Google Scholar

Zhang Z. H., Feng Ch.L.: Immobilization/hybridization of amino-modified DNA on plasma-polymerized allyl chloride. Applied Surface Science 253 (22) (2007) 8915-8922.Search in Google Scholar

Ishikawa K., Suzuki T., Kitamura Y., Tobe S.: Corrosion resistance of thermal sprayed titanium coatings in chloride solution. J Thermal Spray Technology 8(2) (2007) 273-278.Search in Google Scholar

Liu X., Poon R. W. Y., Kwok S. C. H., Chu P. K., Ding Ch.: Plasma surface modification of titanium for hard tissue replacements. Surface & Coatings Technology 186 (2004) 227-233.Search in Google Scholar

Nakashima Y., Hayashi K., Inadome T., Uenoyama K., Hara T., Kanemaru T., Sugioka Y., Noda I.: Hydroxyapatite-coating on titanium arc sprayed titanium implants. J Biomedical Materials Research Part A 35(3) (1998) 287-298.Search in Google Scholar

Rajesekaran B., Ganesh S. R. S., Joshi S., Sundararajan G.: Performance of plasma sprayed and detonation gun sprayed Cu-Ni-In coatings on Ti-6Al-4V under plain fatigue and fretting fatigue loading. Materials Science & Engineering 479 (1-2) (2008) 83-92.Search in Google Scholar

Bray M., Cockburn A., O'Neill W.: The Laser-assisted Cold Spray process and deposition charactrisation. Surface & Coatings Technology 203 (19) (2009) 2851-2857.Search in Google Scholar

Chiu Ch-Y., Hsu H-Ch., Tuan W-H.: Effect of zirconia addition on the microstructural evolution of Poros hydroxyapatite. Ceramics International 33 (2007) 715-718.Search in Google Scholar

Wiklund U., Larsson M.: Low friction PVD titanium-carbon coatings. Wear 241 (2) 234-238.10.1016/S0043-1648(00)00381-1Search in Google Scholar

Giolli C., Borgioli F., Credi A., et. al.: Characterization of TiO2 coatings prepared by a modified electric arc-physical vapor deposition system. Surface & Coatings Technology 202 (2007) 13-22.Search in Google Scholar

Sobiecki J. R., Wierzchoń T.: Structure and properties of plasma carbonitrided Ti-6Al-2Cr-2Mo Alloy. Surface & Coatings Technology 200 (14-15) 4363-4367.10.1016/j.surfcoat.2005.02.162Search in Google Scholar

Moller W., Mukherjee S.: Plasma-based ion implantation. Current Science 83 (3) (2002) 237-253.Search in Google Scholar

Zhao X., Liu X., Ding Ch., Chu P. K.: Effects of plasma treatment on bioactivity of TiO2 coatings. Surface & Coatings Technology 201 (2007) 6878-6881.Search in Google Scholar

Valencia-Alvarado R., Piedad-Beneitez A., Lopez-Callejas R., Barocio S. R., Mercado-Cabrera A., Pena-Equiluz R., Munoz-Castro A. E., Rosa-Vazquez J.: Oxygen implantation and diffusion in pure titanium by an rf inductively coupled plasma. Vacuum 83 (Supp 1) (2009) 264-267.Search in Google Scholar

Gurrappa I., Monara D., Gerlach J. W., Mandl S., Rauschenbach B.: Influence of nitrogen implantation on the high temperature oxidation of titanium-based alloys. Surface & Coatings Technology 201 (6) (2006) 3536-3546.Search in Google Scholar

Johansson C. B., Lausmaa J., Rastlund T., Thomsen P.: Commercially pure titanium and Ti6Al4V implants with an without nitrogen-ion-implantation: surface characterization and quantitative studies in rabbit cortical bone. J Materials Science in Medicine 4 (2) (1993) 132-141.Search in Google Scholar

Varela M., Garcia J. A., Rodriquez R., Caceres D., Ballesteros C.: Microstructure changes induced by low-energy high-temperature nitrogen ion implantation on vanadium-titanium alloys. Nanotechnology 3 (2003) 207-210.Search in Google Scholar

Pham M. T., Matz W., Reuther H., Richter E., Steiner G.: Hydroxyapatite nucleation on Na ion implanted Ti surfaces. J Materials Science Letters 19 (2000) 1029-1031.Search in Google Scholar

Cai K. Y.: Surface modification of titanium films with sodium ion implantation: surface properties and protein adsorption. Acta Metallurgica Sinica 20 (2) (2007) 148-156.Search in Google Scholar

Asami K., Ohtsu N., Saito K., Hanawa T.: CaTiO3 films sputter-deposited under simultaneous Ti-ion implantation on Ti-substrate. Surface & Coatings Technology 200 (2005) 1005-1008.Search in Google Scholar

Krupa D., Baszkiewicz J., Sobczak J. W., Biliński A., Barcz A., Rajchel B.: Influence of anodic oxidation on the bioactivity and corrosion resistance of phosphorous-ion implanted titanium. Vacuum 70 (2003) 109-113.Search in Google Scholar

Wan Y. Z., Huang Y., He F., Wang Y. L., Zhao Z. G., Ding H. F.: Effect of Mg ion implantation on calcium phosphate formation on titanium. Surface & Coatings Technology 201 (2006) 2904-2909.Search in Google Scholar

Krupa D., Baszkiewicz J., Kozubowski J. A., Barcz A., Sobczak J. W., Biliński A., Lewandowska-Szumiel M., Rajchel B.: Effect of dual Ion implantation of calcium and phosphorus on the properties of titanium. Biomaterials 26 (2005) 2847-2856.Search in Google Scholar

Krupa D., Baszkiewicz J., Kozubowski J., Barcz A., Sobczak J., Biliński A., Rajchel B.: The influence of calcium and/Or phosphorous ion implantation on the structure and corrosion resistance of titanium. Vacuum 63 (2001) 715-719.Search in Google Scholar

Hanawa T., Nakajima S., Yamamoto A., Suzuki Y., Iwaki M.: Control of platelet and cell adhesion to titanium with helium ion implantation. European Cells and Materials 6 (Supp 1) (2003) 36.Search in Google Scholar

Ma X., Sun Y., Wu P., Xia L., Yukimura K.: Structure of titanium films implanted with carbon by plasma-based ion implantation. Surface & Coatings Technology 169-170 (2003) 375-378.Search in Google Scholar

eISSN:
2083-4799
ISSN:
1730-2439
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Materialwissenschaft, Funktionelle und Intelligente Materialien