Zitieren

[1] ABE MK, SAELZLER MP, ESPINOSA R III, KAHLE KT, HERHENSON MB, LE BEAU MM, ROSNER MR. ERK8, a new member of the mitogen-activated protein kinase family. J Biol Chem 2002; 277: 16733-16743.10.1074/jbc.M11248320011875070Open DOISearch in Google Scholar

[2] ASHWELL JD. The many pathways to p38 mitogen-activated prtein kinase activation In the immune system. Nat Rev Immunol 2006; 6: 532-540.10.1038/nri186516799472Open DOISearch in Google Scholar

[3] BERENSON LS, YANG J, SLECKMAN BP, MURPHY TL, MURPHY KM. Selective requirement of p38{alpha} MAPK in cytokine-dependent, but not antigen receptor-dependent, Th1 responses. J Immunol 2006; 176: 4616-4621.10.4049/jimmunol.176.8.461616585552Search in Google Scholar

[4] COOK R, WU CC, KANG YJ, HAN J. The role of the p38 pathway in adaptive immunity. Cell Mol Immunol 2007; 4: 253-259.Search in Google Scholar

[5] CZARNECKA AM, GOLIK P, BARTNIK E. Mitochondria jako integratory apoptozy. Post Biol Kom 2006; 33: 525-542.Search in Google Scholar

[6] DIAZ-FLORES E, SILICEO M, MARTINEZ AC, MERIDA I. Membrane translocation of protein kinase C-theta during T lymphocyte activation requires phospholipase C-gamma-generated diacylglycerol. J Biol Chem 2003; 278: 29208-29215.10.1074/jbc.M30316520012738795Open DOISearch in Google Scholar

[7] DICKINSON RJ, KEYSE SM. Diverse physiological functions for dual-specificity MAP kinase phosphatases. J Cell Sci 2006; 119: 4607-4615.10.1242/jcs.032661709326517093265Open DOISearch in Google Scholar

[8] DUSTIN ML. T-cell activation through immunological synapses and kinapses. Immunol Rev 2008; 221: 77-89.10.1111/j.1600-065X.2008.00589.x18275476Search in Google Scholar

[9] FUJISAWA T, TAKEDA K, ICHIJO H. ASK family proteins in stress response and disease. Mol Biotechnol 2007; 37: 13-18.10.1007/s12033-007-0053-x1791415817914158Open DOISearch in Google Scholar

[10] GOHDA J, MATSUMURA T, INOUE J. Cutting edge: TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not toll/IL-1 receptor domain-containing adaptor-inducing IFNbeta (TRIF)-dependent pathway in TLR signaling. J Immunol 2004; 173: 2913-2917.10.4049/jimmunol.173.5.291315322147Open DOISearch in Google Scholar

[11] GOLD MR. B cell development: important work for ERK. Immunity 2008; 28: 488-490.10.1016/j.immuni.2008.03.0081840019118400191Open DOISearch in Google Scholar

[12] GOŁĄB J, JAKÓBISIAK M, LASEK W, STOKŁOSA T. Immunologia. Wyd. Nauk PWN, Warszawa, 2008.Search in Google Scholar

[13] GORTZ B, HAYER S, TUERCK B, ZWERINA J, SMOLEN JS, SCHETT G. Tumour necrosis factor activates the mitogen-activated protein kinases p38α and ERK in the synovial membrane in vivo. Arthritis Res Ther 2005; 7: R1140-R1147.10.1186/ar1797125744116207331Open DOISearch in Google Scholar

[14] HABELHAH H, TAKAHASHI S, CHO SG, KADOYA T, WATANABE T, RONAI Z. Ubiquitination and translocation of TRAF2is required for activation of JNK but not of p38or NF-kB. EMBO J 2004; 23: 322-332.10.1038/sj.emboj.7600044Open DOISearch in Google Scholar

[15] HAN A, SAIJO K, MECKLENBRAUKER I, TARAKHOVSKY A, NUSSENZWEIG MC. Bam32 links the B cell receptor to ERK and JNK and is essential for B cell proliferation but not survival. Immunity 2003; 19: 621-634.10.1016/S1074-7613(03)00275-9Open DOISearch in Google Scholar

[16] HERRIN BR, JUSTEMENT LB. Expression of the adaptor protein hematopoietic Src homology 2 is up-regulated in response to stimuli that promote survival and differentiation of B cells. J Immunol 2006; 176: 4163-4172.10.4049/jimmunol.176.7.416316547253Search in Google Scholar

[17] HITTI E, IAKOVLEVA T, BROOK M, DEPPENMEIER S, GRUBER AD, RADZIOCH D, CLARK AD, BLACKSHEAR PJ, KOTLYAROV A, GAESTEL M. Mitogen-activated protein kinaseactivated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Moll Cell Biol 2006; 26: 2399-2407.10.1128/MCB.26.6.2399-2407.2006143028216508014Open DOISearch in Google Scholar

[18] HSU S, WU C, HAN J, LAI M. Involvement of p38 mitogen-activated protein kinase in different stages of thymocyte development. Blood 2003; 101: 970- 976.10.1182/blood-2002-03-074412393706Open DOISearch in Google Scholar

[19] JACINTO R, HARTUNG T, MCCALL C, LI L. Lipopolysaccharide- and lipoteichoic acid-induced tolerance and cross-tolerance: distinct alterations in IL-1 receptor-associated kinase. J Immunol 2002; 168: 6136-6141.10.4049/jimmunol.168.12.613612055225Open DOISearch in Google Scholar

[20] JEFFREY KL, CAMPS M, ROMMEL C, MACKAY CR. Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nat Rev Drug Discov. 2007; 6: 391-403.1747384410.1038/nrd228917473844Search in Google Scholar

[21] JIANG Y, CHENG H. Evidence of LAT as a dual substrate for Lck and Syk in T lymphocytes.Leuk Res 2007; 31: 541-545.10.1016/j.leukres.2006.07.01016938345Open DOISearch in Google Scholar

[22] JORRITSMA PJ, BROGDON JL, BOTTOMLY K. Role of TCR-induced extracellular signalregulated kinase activation in the regulation of early IL-4 expression in naïve CD4+ T cells. J Immunol 2003; 170: 2427-2434.10.4049/jimmunol.170.5.242712594266Search in Google Scholar

[23] KAMINSKA B. MAPK signalling pathways as molecular targets for anti- inflammatory therapy- from molecular mechanisms to therapeutic benefits. BBA Biochem Biophys Acta 2005; 1754: 253-262.10.1016/j.bbapap.2005.08.01716198162Search in Google Scholar

[24] KATZAV S. Vav1: an oncogene that regulates specific transcriptional activation of T cells. Blood 2004; 7: 2443-2451.10.1182/blood-2003-08-283414592821Open DOISearch in Google Scholar

[25] KHELIFI AF, ALCONTRES MS, SALOMONI P. Daxx is required for stress-induced cell death and JNK activation. Cell Death Differ 2005; 12: 724-733.10.1038/sj.cdd.44015591586119415861194Open DOISearch in Google Scholar

[26] KLEIN A. Molekularne podstawy regulacji hormonalnej. Wyd. UJ, Kraków, 2002.Search in Google Scholar

[27] KORB A. TOHIDAST- AKRAD M, CETIN E, AXMANN R, SMOLEN J, SCHETT G. Differential tissue expression and activation of p38 MAPK α, β, γ and δ isoforms in rheumatoid arthritis. Arthritis Rheum 2006; 54: 2745-2756.10.1002/art.2208016947383Open DOISearch in Google Scholar

[28] KOUL A, HERGET T, KLEBL B, ULLRICH A. Interplay between mycobacteria and host signalling pathways. Nat Rev Microbiol. 2004; 2: 189-20210.1038/nrmicro8401508315515083155Open DOISearch in Google Scholar

[29] KUROSAKI T, HIKIDA M. Tyrosine kinases and their substrates in B lymphocytes. Immunol Rev 2009; 228: 132-148.10.1111/j.1600-065X.2008.00748.x19290925Search in Google Scholar

[30] LEE HK, DUNZENDORFER S, SOLDAU K, TOBIAS PS. Double-stranded RNA-mediated TLR3 activation is enhanced by CD14. Immunity 2006; 24: 153-163.10.1016/j.immuni.2005.12.01216473828Open DOISearch in Google Scholar

[31] Li H, Lin X. Positive and negative signalling components involved in TNFalpha-induced NF-kappaB activation. Cytokine 2008; 41: 1-8.10.1016/j.cyto.2007.09.01618068998Open DOISearch in Google Scholar

[32] MARTELLI MP, LIN H, ZHANG W, SAMELSON LE, BIERER BE. Signaling via LAT (linker for T-cell activation) and Syk/ZAP70 is required for ERK activation and NFAT transcriptional activation following CD2 stimulation. Blood 2002; 96: 2181-2190.10.1182/blood.V96.6.2181Search in Google Scholar

[33] MARUNIEWICZ M, WOJTASZEK P. Pochodzenie i ewolucja śmierci komórki. Post Biol Kom 2007; 34: 651-667.Search in Google Scholar

[34] MAVROPOULOS A, SULY G, COPE AP, CLARK AR. Stabilization of IFN-γ mRNAby MAPK p38 in IL-12- and IL-18-stimulatedhuman NK cells. Blood. 2005; 105: 282-288.10.1182/blood-2004-07-278215345584Search in Google Scholar

[35] MCCUBREY JA, LAHAIR MM, FRANKLIN RA. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal 2006; 8: 1775- 1789.10.1089/ars.2006.8.177516987031Open DOISearch in Google Scholar

[36] McNEIL LK, STARR TK, HOGQUIST KA. A requirement for sustained ERK signaling during thymocyte positive selection in vivo. Proc Natl Acad Sci U S A 2005; 102: 13574-13579.10.1073/pnas.0505110102122463816174747Open DOISearch in Google Scholar

[37] MEUSEL TR, IMANI F. Viral induction of inflammatory cytokines in human epithelial cells follows a p38 mitogen-activated protein kinase-dependent but NF- B-independent pathway. J Immunol 2003; 171: 3768- 3774.10.4049/jimmunol.171.7.376814500677Open DOISearch in Google Scholar

[38] MITTELSTADT PR, SALVADOR JM, FORNACE AJ, ASHWELL JR. JD. Activating p38 MAPK: new tricks for an old kinase. Cell Cycle 2005; 4: 1189-1192.10.4161/cc.4.9.204316103752Open DOISearch in Google Scholar

[39] NAGAI H, NOGUCHI T, TAKEDA K, ICHIJO H. Pathophysiological roles of ASK1-MAP kinase signaling pathways. J Biochem Mol Biol 2006; 40: 1-6.Search in Google Scholar

[40] NISHIMOTO S, NISHIDA E. MAPK signalling: ERK5 versus ERK1/2. EMBO Rep 2006; 7: 782-786.10.1038/sj.embor.7400755152515316880823Search in Google Scholar

[41] NOWAK JZ, ZAWILSKA JB. Receptory i mechanizmy przekazywania sygnału. Wyd. Nauk. PWN, Warszawa, 2004.Search in Google Scholar

[42] OHKUSU-TSUKADA K, TOMINAGA N, UDONO H, YUI K. Regulation of the maintenance of peripheral T-cell anergy by TAB1-mediated p38-alpha activation. Mol Cell Biol 2004; 24: 6957-6966.10.1128/MCB.24.16.6957-6966.200447971315282297Open DOISearch in Google Scholar

[43] ORTEGA-PEREZ I, CANO E, WERE F, VILLAR M, VAZQUEZ J, REDONDO JM. c-Jun Nterminal kinase (JNK) positively regulates NFATc2 transactivation through phosphorylation within the N-terminal regulatory domain. J Biol Chem 2005; 28: 20867-20878.10.1074/jbc.M50189820015743762Open DOISearch in Google Scholar

[44] PAN ZK. Toll-like receptors and TLR-mediated signaling: more questions than answers. Am J Physiol Lung Cell Mol Physiol 2004; 286: L918-L920.10.1152/ajplung.00381.200315064238Search in Google Scholar

[45] PARK HH, LO YC, LIN SC, WANG L, YANG JK, WU H. The death domain superfamily in intracellular signalling of apoptosis and inflammation. Annu Rev Immunol 2007; 25: 561-586. 10.1146/annurev.immunol.25.022106.141656290444017201679Open DOISearch in Google Scholar

[46] PIATELLI MJ, DOUGHTY C, CHILES TC. Requirement for a hsp90 chaperone-dependent MEK1/2- ERK pathway for B cell antigen receptor-induced cyclin D2 expression in mature B lymphocytes. J Biol Chem 2002; 277: 12144-12150.10.1074/jbc.M20010220011823472Search in Google Scholar

[47] PIATELLI MJ, WARDLE C, BLOIS J, DOUGHY C, SCHRAM BR, ROTHSTEIN TL, CHILES TC. Phosphatidylinositol-3-kinase-dependent MEK1/2-ERK and NF-kappaB signaling pathways are required for B cell antigen receptor-mediated cyclin D2 induction in mature B lymphocytes. J Immunol 2004; 172: 2753-2762.10.4049/jimmunol.172.5.275314978074Search in Google Scholar

[48] PIEKAROWICZ A. Podstawy wirusologii molekularnej. Wyd. Nauk. PWN, Warszawa, 2004.Search in Google Scholar

[49] PISEGNA S, PIROZZI G, PICCOLI M, FRATI L, SANTONI A, PALMIREI G. p38 MAPK activation controls the TLR3-mediated up-regulation of cytotoxicity and cytokine production in human NK cells. Blood 2004; 104: 4157-4164.10.1182/blood-2004-05-1860Open DOISearch in Google Scholar

[50] RINCON M, DAVIS RJ. Regulation of immune response by stress-activated protein kinases. Immunol Rev 2009; 228: 212-214.10.1111/j.1600-065X.2008.00744.x19290930Open DOISearch in Google Scholar

[51] ROOSE JP, MOLLENAUER M, GUPTA VA, STONE J, WEISS A. A diacylglycerol-protein kinase C-RasGRP1 pathway directs Ras activation upon antigen receptor stimulation of T cells. Mol Cell Biol 2005; 25: 4426-4441.10.1128/MCB.25.11.4426-4441.2005Search in Google Scholar

[52] RUBINFELD H, SEGER R. The ERK cascade: a prototype of MAPK signaling. Mol Biotechnol 2005; 31: 151-174.10.1385/MB:31:2:15116170216Open DOISearch in Google Scholar

[53] RUPNIEWSKA Z, BOJARSKA-JUNAK A. Apoptoza: Przepuszczalność błony mitochondrialnej i rola pełniona przez białka z rodziny Bcl-2. Postepy Hig Med Dosw 2004; 58: 538-547.Search in Google Scholar

[54] RUTZ M, MATZGER J, GELLERT T, LUPPA P, LIPFORD GB, WAGNER H, BAUER S. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur J Immunol 2004; 34: 2541-2550.10.1002/eji.20042521815307186Open DOISearch in Google Scholar

[55] SALVADOR JM, MITTELSTADT PR, BELOVA GI, FORNACE JR. AJ, ASHWELL JD. The autoimmune suppressor Gadd45alpha inhibits the T cell alternative p38 activation pathway. Nat Immunol 2005; 6: 396-402.10.1038/ni117615735649Open DOISearch in Google Scholar

[56] SALVADOR JM, MITTELSTADT PR, GUSZCZYNSKI T. Alternative p38 activation pathway mediated by T cell receptor- proximal tyrosine kinases. Nat Immunol 2005; 10: 1038-1177.10.1038/ni117715735648Search in Google Scholar

[57] SALMOND RJ, FILBY A, QURESHI I, CASERTA S, ZAMOYSKA R.T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunol Rev 2009; 228: 9-22.10.1111/j.1600-065X.2008.00745.x19290918Search in Google Scholar

[58] SHIM JH, PASCHAL AE, BAILEY ST, RAO P, HYDEN MS, LEE KY, BUSSEY C, STECKEL M, TANAKA N, YAMAMDA G, AKIRA S, MATSUMOTO K, GHOSH S. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 2005; 19: 2668-2681.10.1101/gad.1360605128396016260493Open DOISearch in Google Scholar

[59] SINGH RAK, ZHANG JZ. Differential activation of ERK, p38, and JNK required for Th1 and Th2 deviation in myelin-reactive T cells induced by altered peptide ligand. J Immunol 2004; 173: 7299-7307.10.4049/jimmunol.173.12.729915585853Open DOISearch in Google Scholar

[60] SUMBAYEV VV, YASINSKA M. Role of MAP kinase- dependent apoptotic pathway in innate immune responses and viral infection. Scand J Immunol 2006; 63: 391-400.10.1111/j.1365-3083.2006.001764.x1676469216764692Open DOISearch in Google Scholar

[61] SWEET L, SCHOREY JS. Glycopeptidolipids from Mycobacterium avium promote macrophage activation in a TLR2-and MyD88- dependent manner. J Leuk Biol 2006; 80: 415-423.10.1189/jlb.120570216760377Search in Google Scholar

[62] SYMONS A, BEINKE S, LEY SC. MAP kinase kinase kinases and innate immunity. Trends Immunol 2006; 27: 40-48.1635676910.1016/j.it.2005.11.00716356769Search in Google Scholar

[63] SZCZEPAŃSKI M, GÓRALSKI M, MOZER-LISEWSKA I, SAMARA H, ŻEROMSKI J. Rola receptorów Toll-podobnych w odporności. Post Biol Kom 2004; 31: 543-562Search in Google Scholar

[64] TEDDY TC, YANG TTC, XIONG Q, GRAEF IA, CRABTREE GR, CHOW CW. Recruitment of the extracellular signal-regulated kinase/ribosomal S6 kinase signaling pathway to the NFATc4 transcription activation complex. Mol Cell Biol 2005; 25: 907-920.10.1128/MCB.25.3.907-920.200554401515657420Search in Google Scholar

[65] WESTRA J, van der MEER DB, de BORE P, van LEEUWEN MA, van RIJSWIJK MH, LIMBURG PC. Strong inhibition of TNF-α production and inhibition of IL-8 and COX-2 mRNA expression in monocyte-derived macrophages by RWJ 67657, a p38 mitogen-activated protein kinase (MAPK) inhibitor. Arthritis Res Ther 2004; 6: R384- R392.10.1186/ar120446492415225374Open DOISearch in Google Scholar

[66] ZHANG K, ZHANG L, ZHU D, BAE D, NEL A, SAXON A. CD40-mediated p38 mitogen-activated protein kinase activation is required for immunoglobulin class switch recombination to IgE. J. Allergy Clin Immunol 2004; 110: 421-428. 10.1067/mai.2002.12638212209089Search in Google Scholar

[67] ZHANG Y, DONG C. Regulatory mechanisms of mitogen-activated kinase signaling. Cell Mol Life Sci 2007; 64: 2771-2789.10.1007/s00018-007-7012-317726577Open DOISearch in Google Scholar

[68] ZHONG XP, HAINEY EA, OLENCHOCK Ba, ZHAO H, TOPHAM MK, KORETZKY GA.Search in Google Scholar

Regulation of T cell receptor-induced activation of the Ras-ERK pathway by diacylglycerol kinase zeta. J Biol Chem 2002; 277: 31089-31098. 10.1074/jbc.M20381820012070163Search in Google Scholar

eISSN:
2544-3577
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Molekularbiologie, Biochemie