Uneingeschränkter Zugang

Astronavigation System as an Autonomous Enhancement Suite for a Strapdown Inertial Navigation System: An Evaluation

   | 29. Mai 2009

Zitieren

Ali, J., Zhang, C.Y. (2004). Simulation algorithm for SINS axes misalignment angles through stars observation. In Proceedings of the 11th Saint Petersburg International Conference on Integrated Navigation Systems, 24-26 May 2004. Sankt-Peterburg: Elektropribor, 129-130.Search in Google Scholar

Leibe, C.C. (1995). Star trackers attitude determination. IEEE AES Systems Magazine, 10 (6), 10-16.10.1109/62.387971Search in Google Scholar

Horsfall, R.B. (1959). Celestial guidance. ARS Journal, 29, 981-988.10.2514/8.4961Search in Google Scholar

Eisenman, A.R., Leibe, C.C. (1997). The advancing state-of-the-art in second generation star trackers. In Calibration of AVNIR. Proc. SPIE, Vol. 3221, 524-535.10.1117/12.298121Search in Google Scholar

Brown, A. Moy, G. (1992). Long duration strapdown stellar-inertial navigation using satellite tracking. In IEEE Position Location and Navigation Symposium. New York: IEEE, 194-201.10.1109/PLANS.1992.185842Search in Google Scholar

Leibe, C.C., Dennison, E.W., Hancock, B. et al (1998). Active pixel sensor (APS) based star tracker. In IEEE Position Location and navigation Symposium. New York: IEEE, 119-127.10.1109/AERO.1998.686811Search in Google Scholar

Padgett, C., Delgado, K.K., Udomkesmalee, S. (1997). Evaluation of star identification techniques. Journal of Guidance, Control and Dynamics, 20 (2), 259-267.10.2514/2.4061Search in Google Scholar

Kosik, J. (1991). Star pattern identification aboard an inertially stabilized spacecraft. Journal of Guidance, Control and Dynamics, 20 (2), 230-235.10.2514/3.20632Search in Google Scholar

Wertz, J. (ed.) (1978). Spacecraft Attitude Determination and Control. Boston, MA: Reidel.10.1007/978-94-009-9907-7Search in Google Scholar

Shuster, M.D., Oh, S.D. (1991). Three-axis attitude determination from vector observations. Journal of Guidance, Control and Dynamics, 4 (1), 70-77.Search in Google Scholar

Markley, F.L. (1988). Attitude determination using vector observation and singular value decomposition. The Journal of the Astronautical Sciences, 36 (3), 245-258.Search in Google Scholar

Mortari, D. (1997). ESOQ: A closed form solution to the Wahba problem. Journal of the Astronautical Sciences, 45 (2), 195-204.10.1007/BF03546376Search in Google Scholar

Mortari, D. (1997). ESOQ2: Single point algorithm for fast optimal attitude determination. In Advances in the Astronautical Sciences, Vol. 95, Paper 97-167, 10-12 February 1997. Huntsville, AL, 817-826.Search in Google Scholar

Rao, G.N., Alex, T.K., Bhat, M.S. (1991). Incremental-angle and angular velocity estimation using a star sensor. Journal of Guidance, Control and Dynamics, 25 (3), 433-441.Search in Google Scholar

Ali, J., Fang, J.C. (2004). In-flight alignment of inertial navigation system by celestial observation technique. In Proceedings of the International Symposium on Inertial Navigation Technology and Intelligent Traffic, 15-17 October 2004. Nanjing, China.Search in Google Scholar

Fernandez, M., Macomber, G.R. (1962). Inertial Guidance Engineering. Prentice-Hall, Inc.Search in Google Scholar

Levine, S. (1995). AGARDograph on advanced astroinertial navigation systems. In AGARD-AG-331. Aerospace Navigation Systems. Research and Technology Organisation (NATO), 187-199.Search in Google Scholar

Kalman, R.E. (1960). A new approach to linear filtering and prediction problems. ASME Journal of Basic Engineering, 82D, 35-45.10.1115/1.3662552Search in Google Scholar

Quan, W., Fang, J.C. (2005). Hardware-in-the-loop simulation of celestial navigation system. In Proceedings of the 12th Saint Petersburg International Conference on Integrated Navigation Systems, 23-25 May 2005. Sankt-Peterburg: Elektropribor, 123-125.Search in Google Scholar

eISSN:
1335-8871
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Mess-, Steuer- und Regelungstechnik