Uneingeschränkter Zugang

A Bacterial Hydrogen Production Test System for Measuring H2 Concentrations in Liquids and Gases


Zitieren

Holladay, J. D., Hu J., King, D. L., & Wang, Y. (2009). An overview of hydrogen production technologies. Catalysis Today, 139, 244-260.10.1016/j.cattod.2008.08.039Search in Google Scholar

Das, D., & Veziroglu, N. T. (2008). Advances in biological hydrogen production processes. Intern. J. Hydrogen Energy, 33, 6046-6057.10.1016/j.ijhydene.2008.07.098Search in Google Scholar

Kotay Meher, S., & Das, D. (2008). Biohydrogen as a renewable energy resource-prospects and potentials. Intern. J. Hydrogen Energy, 76, 258-263.Search in Google Scholar

Donohue, T. J., & Cogdell, R. J. (2006). Microorganisms and clean energy. Nature Reviews Microbiology 4, 800. | doi:10.1038/nrmicro1534.10.1038/nrmicro1534Search in Google Scholar

Das, D, & Veziroglu, T. N. (2001). Hydrogen production by biological processes: a survey of literature. Intern. J. Hydrogen Energy, 26, 13-28.10.1016/S0360-3199(00)00058-6Search in Google Scholar

Levin, D. B., Pitt, L., & Love, M. (2004). Biohydrogen production: prospects and limitations to practical application. Intern. J. Hydrogen Energy, 29, 173-185.10.1016/S0360-3199(03)00094-6Search in Google Scholar

Nath, K., & Das, D. (2004). Improvement of fermentative hydrogen production: various approaches. Appl. Microbiol. Biotechnol., 65, 520-529.10.1007/s00253-004-1644-0Search in Google Scholar

Hallenbeck, P. C., & Benemann, J. R. (2002). Biological hydrogen production; fundamentals and limiting processes. Intern. J. Hydrogen Energy, 27, 1185-1193.10.1016/S0360-3199(02)00131-3Search in Google Scholar

Maeda, T., Sanchez-Torres, V., & Wood, T. K. (2008). Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol., 77, 879-890.10.1007/s00253-007-1217-017938909Search in Google Scholar

Wang, J., & Wan, W. (2009). Factors influencing fermentative hydrogen production: A review. Intern. J. Hydrogen Energy, 34, 799-811.10.1016/j.ijhydene.2008.11.015Search in Google Scholar

Nath, K., Muthukumar, M., Kumar, A., & Debabrata, D. (2008). Kinetics of two-stage fermentation process for the production of hydrogen. Intern. J. Hydrogen Energy, 33, 1195-1203.10.1016/j.ijhydene.2007.12.011Search in Google Scholar

Sander, R. (1999). Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry. Air Chemistry Department of Max-Planck Institute of Chemistry. http://www.mpch-mainz.mpg.de/~sander/res/henry.html http://www.mpch-mainz.mpg.de/~sander/res/henry.htmlSearch in Google Scholar

Mandelis, A., & Christofides, C. (1993). Physics, Chemistry and Technology of Solid State Gas Sensor Devices. Wiley, 352.Search in Google Scholar

Pauss, A., Andre, G., Perrier, M., & Guiot, R. (1990). Liquid-to-gas transfer in anaerobic processes: Inevitable transfer limitations of methane and hydrogen in the biomethanation process. Appl. Environ. Microbiol., 56(6), 1636-1644.10.1128/aem.56.6.1636-1644.1990Search in Google Scholar

Wilkins, J. R., Stoner, G. E., & Boykin, E. H. (1974). Microbial Detection Method Based on Sensing Molecular Hydrogen. Applied Microbiology, 5, 949-952.10.1128/am.27.5.949-952.1974Search in Google Scholar

Mills, A. (2006). Instrumental Note: Platinized Platinum, Platinum Sponge and Platinum Black. Bulletin Sci. Instrument Soc., 89, 35-37.Search in Google Scholar

Ghirardi, M, Togasaki, R. K., & Seibert, M. (1997). Oxygen sensitivity of algal H2-production. Applied Biochem Biotechnol. 63-65, 141-151.10.1007/BF02920420Search in Google Scholar

Revsbech, N. P., & Jørgensen, B. B. (1986). Microelectrodes: Their Use in Microbial Ecology. Advances in Microbial Ecology, 9. New York: Plenum, 293-352.10.1007/978-1-4757-0611-6_7Search in Google Scholar

(2007). Micro-Respiration System Manual, Hydrogen Sensor Manual, Unisense A/S, (Denmark), Version 20070828 http://www.unisense.com/Default.aspx?ID=107Search in Google Scholar

Flynn, T., Ghirardi, M. L., & Seibert, M. (2002). Accumulation of O2-tolerant phenol-types in H2-producing strains of Chlamydomonas reinhardtii by sequential applications of chemical mutagenesis and selection. Intern. J. Hydrogen Energy, 27, 1421-1430.10.1016/S0360-3199(02)00117-9Search in Google Scholar

Atlas, M. R. (2004). Luria Bertani media: Handbook of microbiological media (3rd ed-n). CRC Press, p. 942.Search in Google Scholar

Madigan, M. T., & Martinko, J. M. (2006). Brock Biology of Microorganisms (11th ed-n). Pearson Prentice Hall (USA), 118-119.Search in Google Scholar

Penfold, D. W., Forster, C. F., & Macaskie, L. E. (2003). Increased hydrogen production by Escherichia coli strain HD 701 in comparison with wild-type strain MC4100. Enzyme and Microbial Technology, 33, 185-189.10.1016/S0141-0229(03)00115-7Search in Google Scholar

Maeda, T., Sanchez-Torres, V., & Wood, T. K. (2008). Metabolic engineering to enhance bacterial hydrogen production. Microbial Biotechnol., 1, 30-39.10.1111/j.1751-7915.2007.00003.x386442921261819Search in Google Scholar

Nandi, R., Dey, S., & Sengupta, S. (2001). Thiosulphate improves yield of hydrogen production from glucose by the immobilized formate hydrogenlyase system of Escherichia coli. Biotechnol Bioeng. 75(4), 492-494.10.1002/bit.1009111668450Search in Google Scholar

Battino, R., & Clever, L. H. (1966). The Solubility of Gases in Liquids. Chem. Rev., 66 (4), 395-463.10.1021/cr60242a003Search in Google Scholar

Kraemer, J. T., & Bagley, D. M. (2006). Supersaturation of dissolved H2 and CO2 during fermentative hydrogen production with N2 sparging. Biotechnol Lett., 28, 1485-1491.10.1007/s10529-006-9114-716955354Search in Google Scholar

Oh, Y-K., Seol, E-H., Yeol Lee, E., & Park, S. (2002). Fermentative hydrogen production by a new chemolithotrophic bacterium Rhodopseudonomas palustris P4. Intern. J. Hydrogen Energy, 27, 1373-1379.10.1016/S0360-3199(02)00100-3Search in Google Scholar

ISSN:
0868-8257
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Physik, Technische und angewandte Physik