Über diesen Artikel
Online veröffentlicht: 05. Jan. 2011
Seitenbereich: 189 - 196
DOI: https://doi.org/10.2478/v10037-010-0022-x
Schlüsselwörter
This content is open access.
In this article we introduce and prove properties of simplicial complexes in real linear spaces which are necessary to formulate Sperner's lemma. The lemma states that for a function ƒ, which for an arbitrary vertex υ of the barycentric subdivision B of simplex K assigns some vertex from a face of K which contains υ, we can find a simplex S of B which satisfies ƒ(S) = K (see [10]).