Zitieren

Johnson, B. F. G. (2003). Topics in Catalysis, Chem. & Mater. Sci. 24(1-4), 147-159. DOI: 10.1023/B:TOCA.0000003086.83434.b6.10.1023/B:TOCA.0000003086.83434.b6Search in Google Scholar

Khanna, V. K. (2008). Nanoparticle-based Sensors, Defence Sci. J. 58(5), 608-616.Search in Google Scholar

Hoshino, A., Fujioka, K. & Oku, T. (2004). Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett. 4(11), 2163-2169. DOI: 10.1021/nl048715d.10.1021/nl048715dSearch in Google Scholar

Torchilin, V. P. (2001). Structure and design of polymeric surfactant-based drug delivery systems, J Cont. Rel. 73(2-3), 137-172. DOI:10.1016/S0168-3659(01)00299-1.10.1016/S0168-3659(01)00299-1Search in Google Scholar

Connor, E. E., Mwamuka, J., Gole, A., Murphy, C. J. & Wyatt, M. D. (2005). Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 1(3), 325-327. DOI: 10.1002/smll.200400093.10.1002/smll.200400093Search in Google Scholar

Wu, X. Y. & Lee, P. I. (1993). Preparation and characterization of thermal and pH sensitive nanospheres. Pharm. Res. 10(10), 1544-1547. DOI: 10.1023/A:1018900114881.10.1023/A:1018900114881Search in Google Scholar

Huang, M., Khor, E. & Lim, L. Y. (2004). Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res. 21:344-353. DOI: 10.1023/B:PHAM.0000016249.52831.a5.10.1023/B:PHAM.0000016249.52831.a5Search in Google Scholar

Kabanov, A. V. & Alakhov, V. Y. (2002). Pluronic block copolymers in drug delivery: From micellar nanocontainers to biological response modifiers. Crit. Rev. Ther. Drug Carrier Syst. 19(1), 1-72.10.1615/CritRevTherDrugCarrierSyst.v19.i1.10Search in Google Scholar

Chavanpatil, M. D., Patil, Y. & Panyam, J. (2006). Susceptibility of nanoparticle-encapsulated paclitaxel to p-glycoprotein-mediated drug efflux. Int. J. Pharm. 320, 150-156. DOI:10.1016/j.ijpharm.2006.03.045.10.1016/j.ijpharm.2006.03.045Search in Google Scholar

Pettit, D. K. & Gombotz, W. R. (1998). The development of site-specific drug-delivery systems for protein and peptide biopharmaceuticals, Trends in Biotech. 16(8), 343-349. DOI:10.1016/S0167-7799(98)01186-X.10.1016/S0167-7799(98)01186-XSearch in Google Scholar

Bellocq, N. C., Pun, S. H., Jensen, G. S. & Davis, M. E. (2003). Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconjug. Chem. 14(6), 1122-1132. DOI: 10.1021/bc034125f.10.1021/bc034125f14624625Search in Google Scholar

Feng, S. S. (2004). Nanoparticles of biodegradable polymers for new-concept chemotherapy, Expert Rev. Med. Dev. 1(1), 115-125. DOI:10.1586/17434440.1.1.115.10.1586/17434440.1.1.115Search in Google Scholar

Qiao, W., Wang, B., Wang, Y., Yang, L., Zhang, Y. & Shao, P. (2010). Cancer Therapy Based on Nanomaterials and Nanocarrier Systems, J. Nanomater. Article ID 796303, 9. DOI:10.1155/2010/796303.10.1155/2010/796303Search in Google Scholar

Sona, P. S. (2010). Nanoparticulate Drug Delivery Systems for the Treatment of Diabetes, Digest J. Nanomater. & Biostruc. 5(2), 411-418.Search in Google Scholar

Vlerken, L. E. V. & Amiji, M. M. (2006). Multi-functional polymeric nanoparticles for tumor-targeted drug delivery. Expert Opi. Drug Deliv. 3(2), 205-16. DOI:10.1517/17425247.3.2.205.10.1517/17425247.3.2.205Search in Google Scholar

Avgoustakis, K. (2004). Pegylated poly (lactide) and poly (lactide-co-glycolide) nanoparticles: preparation, properties and possible application in drug delivery, Curr. Drug Deliv. 1(4), 321-333. DOI: 10.2174/1567201043334605.10.2174/1567201043334605Search in Google Scholar

Yam, F., Wu, X. Y. & Zhang, Q. (2000). A novel composite membrane for temperature and pH responsive permeation, in: Controlled Drug Delivery: Designing Technology for the Future (263-272). Ed K. Park, ACS, Washington, DC.Search in Google Scholar

Senior, J. & Gregoriadis, G. (1982). Is half-life of circulating small unilamellar liposomes determined by changes in their permeability? FEBS Lett. 145(1), 109-114. DOI. org/10.1016/0014-5793(82)81216-7.Search in Google Scholar

Shenoy, D., Fu, W., Li, J., Crasto, C., Jones, G., Dimarzio, C., Sridhar, S. & Amiji, M. (2006). Surface functionalization of gold nanoparticles using hetero-bifunctional poly (ethylene glycol) spacer for intracellular tracking and delivery, Int J Nanomed. 1(1), 51-57. DOI: 10.2147/nano.2006.1.1.51.10.2147/nano.2006.1.1.51Search in Google Scholar

Edward, T. & Yeop, S. J. (2002). U. S. Patent No. 20,070,190,160. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

Yin, H., Lee, E. S., Kim, D., Lee, K. H., Oh, K. T. & Bae, Y. H. (2008). Physicochemical characteristics of pH-sensitive poly (L-Histidine)-b-poly (ethylene glycol) / poly (L-lactic acid)-b-poly (ethylene glycol) mixed micelles, J. Control. Rel. 126(2), 130-138. DOI:10.1016/j.jconrel.2007.11.014.10.1016/j.jconrel.2007.11.014Search in Google Scholar

Yoshida, R., Kaneko, Y., Sakai, K., Okano, T., Sakurai, Y., Bae, Y. H. & Kim, S. W. (1994). Positive thermosensitive pulsatile drug release using negative thermosensitive hydrogels, J. Contro. Rel. 32(1), 97-102. DOI:10.1016/0168-3659(94)90229-1.10.1016/0168-3659(94)90229-1Search in Google Scholar

Seymour, L. W., Duncan, R., Strohalm, J. & Kopecek, J. (1987). Effect of molecular weight (MW) of N-(2-hydroxypropyl) methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats, J. Biomed. Mater. Res. 21(11), 1341-1358. DOI: 10.1002/jbm.820211106.10.1002/jbm.8202111063680316Search in Google Scholar

Shefer, S. & Shefer, A. (2004). U. S. Patent No. 20,040,062,778. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

Yang, T. H. (2008). Recent Applications of Polyacrylamide as Biomaterials, Rec. Pat. Mater. Sci. 1(1), 29-40. DOI: 10.2174/1874465610801010029.10.2174/1874465610801010029Search in Google Scholar

Yong, L. I. Y., Qing, D. H., Kang, W., DongLu, S. H. I., Zheng, Z. X. & Xi, Z. R. (2010). Stimulus-responsive polymeric Nanoparticles for biomedical applications, Sci. China Chem. 53(3), 447-457. DOI: 10.1007/s11426-010-0101-4.10.1007/s11426-010-0101-4Search in Google Scholar

Song, M., Guo, D., Pan, C., Jiang, H., Chen, C., Zhang, R., Gu, Z. & Wang, X. (2008). The application of poly(N-isopropylacrylamide)-co-polystyrene nanofibers as an additive agent to facilitate the cellular uptake of an anticancer drug, Nanotechno. 19(16), 165102. DOI: 10.1088/0957-4484/19/16/165102.10.1088/0957-4484/19/16/165102Search in Google Scholar

Bromberg, L., Temchenko, M. & Hatton, T. A. (2002). Dually Responsive Microgels from Polyether-Modified Poly (acrylic acid): Swelling and Drug Loading, Langmuir. 18(12), 4944-4952. DOI: 10.1021/la011868l.10.1021/la011868lSearch in Google Scholar

Izumi, S. & Kunihiko, T. (1985). U. S. Patent No. 4,536,387. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

Youwei, Z. & Ming, J. (2006). New approaches to stimuli-responsive polymeric micelles and hollow spheres, Front. Chem. China. 1(5), 364-368. DOI: 10.1007/s11458-006-0049-2.10.1007/s11458-006-0049-2Search in Google Scholar

Grodzinski, J. J. (1999). Biomedical application of functional polymers, React. & Funct. Poly. 39, 99-138.10.1016/S1381-5148(98)00054-6Search in Google Scholar

Sung, Y. K. & Kim, S. W. (2000). Advances in biodegradable polymers for drug delivery systems, Korean Poly. J. 8(5), 199-208.Search in Google Scholar

Knoop, R. J. I., Geus, M. D., Habraken, G. J. M., Koning, C. M., Menzel, H. & Heise, A. (2010). Stimuli Responsive Peptide Conjugated Polymer Nanoparticles, Macromol. 43(9), 4126-4132. DOI: 10.1021/ma100327p.10.1021/ma100327pSearch in Google Scholar

Wei, H., Zhang, X. Z., Zhou, Y., Cheng, S. X. & Zhuo, R. X. (2006). Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate), Biomater. 27(9), 2028-2034. DOI:10.1016/j.biomaterials.2005.09.028.10.1016/j.biomaterials.2005.09.028Search in Google Scholar

Yu, W. X. & Frank, Y. (2003). U. S. Patent No. 6565,872. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

Wang, J., Cheng, Y. & Xu, T. (2008). Current Patents of Dendrimers and Hyperbranched Polymers in Membranes, Recent Pat. Chem. Enginee. 1(1), 41-51.Search in Google Scholar

Erathodiyil, N., Reddy, G. R. & Ham, Y. (2007). U. S. Patent No. 20,070,009,441. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

Lyer, A. K., Khaled, G., Fang, J & Maeda, H. (2006). Exploiting the enhanced permeability and retention effect for tumor targeting, Drug Discov. Today. 11(17-18), 812-818. DOI:10.1016/j.drudis.2006.07.005.10.1016/j.drudis.2006.07.005Search in Google Scholar

Chang, J. S., Chang, K. L. B., Hwang, D. F. & Kong, Z. L. (2007). In vitro cytotoxicity of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line, Environ. Sci. Technol. 41(6), 2064-2068. DOI: 10.1021/es062347t.10.1021/es062347tSearch in Google Scholar

Linhardt, J. G., Raiche, A. T. & Salmone, C. (2009). U. S. Patent No. 20,090,117,189. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

Zhang, G., Desnoyer J. R., Stewart, G., Kezis, M. & Hossainy, S. F. A. (2008). U. S. Patent No. 20,080,057,024. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

West, J. L., Sershen, S, R. & Halas, N. J. (2002). U. S. Patent No. 6,428,811. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

Rapoport, N. (2007). Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery, Prog. Poly. Sci. 32(8-9), 962-990. DOI:10.1016/j.progpolymsci.2007.05.009.10.1016/j.progpolymsci.2007.05.009Search in Google Scholar

Hatefi, A. & Amsden, B. (2002). Biodegradable inject able in situ forming drug delivery systems, J Control. Rel. 80(1-3), 9-28. DOI:10.1016/S0168-3659(02)00008-1.10.1016/S0168-3659(02)00008-1Search in Google Scholar

Yin, H., Lee, E. S., Kim, D., Lee, K. H., Oh, K. T. & Bae, Y. H. (2008). Physicochemical characteristics of pH-sensitive poly (l-Histidine)-b-poly (ethylene glycol)/poly (l-Lactide)-b-poly (ethylene glycol) mixed micelles, J. Control. Rel. 126(2), 130-138. DOI:10.1016/j.jconrel.2007.11.014.10.1016/j.jconrel.2007.11.014Search in Google Scholar

Ichikawa, H. & Fukumori, Y. (2000). A novel positively thermosensitive controlled release microcapsule with membrane of nano-sized poly (N-isopropylacrylamie) gel ispesed in ethylcellulose matrix, J. Control. Rel. 63(1-2), 107-119.10.1016/S0168-3659(99)00181-9Search in Google Scholar

Donald, O., Peppas, E. & Nicholas, A. (2008). U. S. Patent No. 20,080,138,430. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

Park, Y. S., Ito, Y. & Imanishi, Y. (1998). Permeation control through porous membranes immobilized with thermosensitive polymer, Langmuir. 14(4), 910-914. DOI: 10.1021/la970866r.10.1021/la970866rSearch in Google Scholar

Mitra, S., Gaur, U., Ghosh, P. C. & Maitra, A. N. (2001). Tumour Targeted Delivery of Encapsulated Dextran-Doxorubicin Conjugate Using Chitosan Nanoparticles as Carrier. J. Control. Rel. 74(1-6), 317-323. DOI: 10.1016/S0168-3659(01)00342-X.10.1016/S0168-3659(01)00342-XSearch in Google Scholar

Chen, H. C. & Chatterjee, Y. (2006). U. S. Patent No. 7,081,489. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

Singer, J. W., Baker, B., De Vries, P., Kumar, A., Shaffer, S., Vawter, E., Bolton, M. & Garzone, P. (2003). Poly-(L)-glutamic acid-paclitaxel (CT-2103) [XYOTAX (TM)], a biodegradable polymeric drug conjugate—Characterization, preclinical pharmacology, and preliminary clinical data, Adv. Exp. Med. Biol. 519, 81-99. DOI: 10.1007/0-306-47932-X_6.10.1007/0-306-47932-X_6Search in Google Scholar

Zhao, M., Zabelina, Y., Rudek, M. A., Wolff, A. C. & Baker, S. D. (2003). A rapid and sensitive method for determination of dimethyl benzoylphenyl urea in human plasma by using LC/MS/MS, J. Pharmaceu. & Biomed. Anal. 33(4), 725-733. DOI:10.1016/S0731-7085(03)00424-2.10.1016/S0731-7085(03)00424-2Search in Google Scholar

Sung & Hsing-Wen. (2006). U. S. Patent No. 20,060,115,537. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

Na, K., Lee, K. H., Lee, D. H. & Bae, Y. H. (2006). Biodegradable thermosensitive nanoparticles from poly(L-lactic acid)/poly(ethylene glycol) alternating multi-block copolymer for potential anti-cancer drug carrier, Eur. J. Pharm. Sci. 27(2-3), 115-122. DOI:10.1016/j.ejps.2005.08.012.10.1016/j.ejps.2005.08.012Search in Google Scholar

Stayton, P. S., Hoffman, S. S. & Xiangchun, Y. (2001). U. S. Patent No. 20,070,224,241. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

Chen, D., Jiang, M. & Huisheng, P. (2007). U. S. Patent No. 7,166,306. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

Des Rieux, A., Fievez, V., Garinot, M., Schneider, Y. J. & Preat, V. (2006). Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach, J. Control. Rel. 116(1), 1-27. DOI:10.1016/j.jconrel.2006.08.013.10.1016/j.jconrel.2006.08.013Search in Google Scholar

Ko, J., Park, K., Kim, Y. S., Kim, M. S., Han, J. K., Kim, K., Park, R. W., Kim, I. S., Song, H. K. & Lee, D. S. (2007). Kwon IC. Tumoral acidic extracellular pH targeting of pH-responsive MPEG-poly (beta-amino ester) block copolymer micelles for cancer therapy, J. Control. Rel. 123(2), 109-115. DOI:10.1016/j.jconrel.2007.07.012.10.1016/j.jconrel.2007.07.012Search in Google Scholar

Wright, D. C. (1998). U. S. Patent No. 5,795,582. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

Dunn, R. L., Garrett, J. S. & Ravivarapu, H. (2004). U. S. Patent No. 6,773,714. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

Harada, M., Sakakibara, H., Yano, T., Suzuki, T. & Okuno, S. (2000). Determinants for the Drug Release from T-0128, Camptothecin Analogue-Carboxymethyl Dextran Conjugate, J. Control. Rel. 69(3), 399-412. DOI:10.1016/S0168-3659(00)00321-7.10.1016/S0168-3659(00)00321-7Search in Google Scholar

Chen, D. Jiang, M. Peng. & Huisheng. (2007). U. S. Patent No. 7,166,306. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

Ulbrich, K. & Subr, V. (2004). Polymeric anticancer drugs with pH-controlled activation, Adv. Drug Deliv. Rev. 56(7), 1023-1050. DOI:10.1016/j.addr.2003.10.040.10.1016/j.addr.2003.10.040Search in Google Scholar

Kramer, M., Stumbe, J. F., Turk, H., Krause, S., Komp, A., Delineau, L., Prokhorova, S., Kautz, H. & Haag, R. (2002). pH-responsive molecular nanocarriers based on dendritic core-shell architectures, Angew. Chem. Int. Ed. 41(22), 4252-4256. DOI: 10.1002/1521-3773(20021115.Search in Google Scholar

Lee, E. S., Na, K. & Bae, Y. H. (2005). Super pH-sensitive multifunctional polymeric micelle, Nano Lett. 5(2), 325-329. DOI: 10.1021/nl0479987.10.1021/nl0479987Search in Google Scholar

Little, S. R., Lynn, D. M. & Anderson, D. G. (2005). U. S. Patent No. 20,050,245,049. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

Kim, J. J. & Park, K. (2001). Modulated insulin delivery from glucose-sensitive hydrogel dosage forms, J. Control. Rel. 77(1-2), 39-47. DOI:10.1016/S0168-3659(01)00447-3.10.1016/S0168-3659(01)00447-3Search in Google Scholar

Lavasanifar, A., Samuel, J. & Kwon, G. S. (2002). Poly (ethylene oxide)-block-poly (L-amino acid) micelles for drug delivery, Adv. Drug Deliv. Rev. 54(2), 169-190. DOI:10.1016/S0169-409X(02)00015-7.10.1016/S0169-409X(02)00015-7Search in Google Scholar

Lee, I. & Srivastava, D. (2008). U. S. Patent No. 20,080,176,074. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

Chen, Mei-chin, T. & Hos1heng. (2008). U. S. Patent No. 20,080,160,078. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

Hubbell, J. H., Pathak, C. P. and Sawhney, A. S. (1999). U. S. Patent No. 5,986,043. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

Petereit, Hans-ulrich, & Meier. (2005). U. S. Patent No. 20,050,154,165. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

Monahan, S. D., Wolff, J. A. and Hagstrom, J. E. (2007). U. S. Patent No. 7,208,314. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

Ohya, Y., Oue, H., Nagatomi, K. & Ouchi, T. (2001). Design of Macromolecular Prodrug of Cisplatin Using Dextran with Branched Galactose Units as Targeting Moieties to Hepatoma Cells, Biomacro, 2(3), 927-933. DOI: http://dx.doi.org/10.1021/bm010053o.10.1021/bm010053oSearch in Google Scholar

Pendri, A., Conover, C. D. & Greenwald, R. B. (1998). Antitumor activity of paclitaxel-2-glycinate conjugated to poly(ethylene glycol): a water-soluble prodrug, Anticancer Drug Des. 13(5), 387-395.Search in Google Scholar

Rathi, R. C., Zentner, G. M. and Jeong, B. (2000). U. S. Patent No. 20,006,117,949. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

Heffernan, M. J. & Murthy, N. (2005). Polyketal nanoparticles: A new pH-sensitive biodegradable drug delivery vehicle, Bioconjug. Chem. 16(6), 1340-1342. DOI: 10.1021/bc050176w.10.1021/bc050176wSearch in Google Scholar

Sharma, P. C. (2009). U. S. Patent No. 20,090,098,205. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

Tomlinson, R., Klee, M., Garrett, S., Heller, S., Duncan, R. & Brocchini, S. (2002). Pendent chain functionalized polyacetals that display pH-dependent degradation: A platform for the development of novel polymer therapeutics, Macromole. 35(2), 473-480. DOI: 10.1021/ma0108867.10.1021/ma0108867Search in Google Scholar

Chen, C. J., Haik, Y. & Chatterjee, J. (2006). U. S. Patent No. 7,081,489. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

Wenzel, J. G. W., Balaji, K. S. S., Koushik, K., Navarre, C., Duran, S. H., Rahe, C. H. & Kompella, U. B. (2002). Pluronic F127 gelformulations of deslorelin and GnRH reduce drug degradation and sustain drug release and effect in cattle. J. Control. Rel. 85, 51-59. DOI:10.1016/S0168-3659(02)00271-7.10.1016/S0168-3659(02)00271-7Search in Google Scholar

Bae, Y. H., Na, K. & Lee (2005). U. S. Patent No. 20,050,186,263. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik