Uneingeschränkter Zugang

Influence of reduction time of copper based catalysts: Cu/Al2O3 and CuCr2O4 on hydrogenolysis of glycerol


Zitieren

Huang, Z., Cui, F., Kang, H., Chen, J., Zhang, X. & Xia, Ch. (2008), Highly dispersed silica-supported copper nanoparticles prepared by precipitation-gel method: A simple but efficient and stable catalyst for glycerol hydrogenolysis. Chem. Mater. 20, 5090-5099. DOI: 10.1021/cm8006233.10.1021/cm8006233Search in Google Scholar

OECD-FAO Agricultural Outlook 2010-2019 from http://stats.oecd.org/viewhtml.aspx?Query-Id=23342&vh=0000&vf=0&l&il=blank&lang=enSearch in Google Scholar

Dasari, M.A., Kiatsimkul, P-P., Sutterlin, W.R. & Suppes, G.J. (2005). Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl. Catal. A-Gen. 281, 225-231. DOI: 10.1016/j.apcata.11.033.Search in Google Scholar

Guo, L., Zhou, J., Mao, J., Guo, X. & Zhang, S. (2009). Supported Cu catalysts for the selective hydrogenolysis of glycerol to propanediols. Appl. Catal. A-Gen. 367, 93-98. DOI: 10.1016/j.apcata.2009.07.040.10.1016/j.apcata.2009.07.040Search in Google Scholar

http://www.propyleneglycol.org/cosmetics.htmlSearch in Google Scholar

Chuah, H.H., Brown, H.S. & Dalton, P.A. (1995). Corterra poly(trimethylene terephtalate). A new performance carpet fiber (1995). Int. Fiber. J. Oct. 1995.Search in Google Scholar

Greene, R.N. (1990). Copolyetherester elastomer with poly(1,3-propylene terephtalate) hard segment. U.S. Patent No. 4,937,314.Search in Google Scholar

Xiu, Z.-L. & Zeng, A.-P. (2008). Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl. Microbiol. Biotechnol. 78, 917-926. DOI: 10.1007/s00253-008-1387-4.10.1007/s00253-008-1387-418320188Search in Google Scholar

Ma, L. & He, D. (2009). Hydrogenolysis of glycerol to propanediols over highly active Ru-Re bimetallic catalysts. Top. Catal. 52, 834-844. DOI: 10.1007/s11244-009-9231-3.10.1007/s11244-009-9231-3Search in Google Scholar

Zeng, A.-P. & Biebl, H. (2002), Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv. Biochem. Eng. Biot. 74, 240-259.Search in Google Scholar

Wang, S. & Liu, H. (2007). Selective hydrogenolysis of glycerol to propylene glycol on Cu-ZnO catalysts. Catal. Lett. 117, 62-67. DOI: 10.1007/s10562-007-9106-9.10.1007/s10562-007-9106-9Search in Google Scholar

Huang, L., Zhu, Y-L., Zheng, H-Y., Li, Y-W. & Zeng, Z-Y. (2008). Continuous production of 1,2-propanediol by the selective hydrogenolysis of solvent-free glycerol under mild conditions. J. Chem. Technol. Biotechnol. 83, 1670-1675. DOI: 10.1002/jctb.1982.10.1002/jctb.1982Search in Google Scholar

Tsukuda, E., Sato, S., Takahashi, R. & Sodesawa, T. (2007). Production of acrolein over silica-supported heteropoly acids. Catal. Commun. 8, 1349-1353. DOI: 10.1016/j.catcom.2006.12.006.10.1016/j.catcom.2006.12.006Search in Google Scholar

Gandarias, I., Arias, P.L., Requies J., Güemez, M.B. & Fierro, J.L.G. (2010). Hydrogenolysis of glycerol to propanediols over a Pt/ASA catalyst: The role of acid and metal sites on product selectivity and the reaction mechanism. Appl. Catal. B-Environ. 97, 248-256. DOI: 10.1016/j.apcatb.2010.04.008.10.1016/j.apcatb.2010.04.008Search in Google Scholar

Mane, R.B., Hengne, A.M., Ghalwadkar, A.A., Vijayanand, S., Mohite, P.R, Potdar, H.S. & Rode, Ch.V. (2010). Cu: Al nano catalyst for selective hydrogenolysis of glycerol to 1,2-propanediol. Catal Lett. 135, 141-147. DOI: 10.1007/s10562-010-0276-5.10.1007/s10562-010-0276-5Search in Google Scholar

Kim, N.D., Oh, S., Joo, J.B., Jung, K.S. & Yi, J. (2010). Effect of preparation method on structure and catalytic activity of Cr-promoted Cu catalyst in glycerol hydrogenolysis. Korean J. Chem. Eng. 27, 431-434. DOI: 10.1007/s11814-010-0070-5.10.1007/s11814-010-0070-5Search in Google Scholar

Khasin, A.A., Yur'eva, T.M., Plyasova, L.M., Kustova, G.N., Jobic, H., Ivanov, A., Chesalov Yu A., Zaikovskii, V.I., Khasin, A.V., Davydova, L.P. & Parmon, V.N. (2008). Mechanistic features of reduction of copper chromite and state of absorbed hydrogen in the structure of reduced copper chromite. Russian J of Gen. Chem. 78, 2203-2213. DOI: 10.1134/S1070363208110418.10.1134/S1070363208110418Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik