Uneingeschränkter Zugang

LiOH.H2O as a catalyst for Knoevenagel and Gewald reactions

   | 28. Dez. 2010

Zitieren

Jones, G. (1967). Organic Reactions. (vol. 15, pp. 204-599). Edited by Adams, R. John Wiley & Sons, New York.Search in Google Scholar

Lehnert, W. (1970). Verbesserte variante der knoevenagel-kondensation mit TiCl4/THF/pyridin(I). alkyliden- und arylidenmalonester bei 0-25°C. Tetrahedron Lett. 11 (54), 4723-4724. DOI:10.1016/S0040-4039(00)89377-6.10.1016/S0040-4039(00)89377-6Search in Google Scholar

Cabello, J. A., Campelo, J. M., Garcia, A., Luna, D. & Marinas, J. M. (1984). Knoevenagel condensation in the heterogeneous phase using aluminum phosphate-aluminum oxide as a new catalyst. J. Org. Chem. 49 (26), 5195-5197. DOI: 10.1021/jo00200a036.10.1021/jo00200a036Search in Google Scholar

Rao, P. S. & Venkataratnam, R. V. (1991). Zinc chloride as a new catalyst for knoevenagel condensation. Tetrahedron Lett. 32 (41), 5821-5822. DOI:10.1016/S0040-4039(00)93564-0.10.1016/S0040-4039(00)93564-0Search in Google Scholar

Rai, U. S., Isloor, A. M., Shetty, P., Vijesh, A. M., Prabhu, N., Isloor, S., Thiageeswaran, M. & Fun, H.-K. (2010). Novel chromeno[2,3-b]pyrimidine derivatives as potential anti-microbial agents. Eur. J. Med. Chem. 45 (6), 2695-2699. DOI:10.1016/j.ejmech.2010.02.040.10.1016/j.ejmech.2010.02.040Search in Google Scholar

Sabitha, G., Reddy, B. V. S., Babu, R. S. & Yadav, J. S. (1998). LiCl Catalyzed Knoevenagel condensation: comparative study of conventional method vs microwave irradiation. Chem. Lett. 27 (8), 773-774, from http://www.jstage.jst.go.jp/login?mid=cl&sourceurl=/article/cl/27/8/773/_pdf&lang=en. http://www.jstage.jst.go.jp/login?mid=cl&sourceurl=/article/cl/27/8/773/_pdf&lang=en10.1246/cl.1998.773Search in Google Scholar

Li, Y.-Q. (2000). Potassium phosphate as a catalyst for the knoevenagel condensation. J. Chem. Res. Synop. 524-525.10.3184/030823400103166003Search in Google Scholar

Bose, D. S. & Narsaiah, A. V. (2001). An efficient benzyltriethylammonium chloride catalysed preparation of electrophilic alkenes a practical synthesis of trimethoprim. J. Chem. Res. Synop. 36-38.10.3184/030823401103168217Search in Google Scholar

Wang, S., Ren, Z., Cao, W. & Tong, W. (2001). The Knoevenagel condensation of aromatic aldehydes with malononitrile or ethyl cyanoacetate in the presence of ctmab in water. Synth. Commun. 31 (5), 673-677. DOI: 10.1081/SCC-100103255.10.1081/SCC-100103255Search in Google Scholar

Morrison, D. W., Forbes, D. C. & Davis Jr, J. H. (2001). Base-promoted reactions in ionic liquid solvents. The Knoevenagel and Robinson annulation reactions. Tetrahedron Lett. 42 (35), 6053-6055. DOI:10.1016/S0040-4039(01)01228-X.10.1016/S0040-4039(01)01228-XSearch in Google Scholar

Harjani, J. R., Nara, S. J. & Salunkhe, M. M. (2002). Lewis acidic ionic liquids for the synthesis of electrophilic alkenes via the Knoevenagel condensation. Tetrahedron Lett. 43 (6), 1127-1130. DOI:10.1016/S0040-4039(01)02341-3.10.1016/S0040-4039(01)02341-3Search in Google Scholar

Bhagat, S., Sharma, R. & Chakraborti, A. K. (2006). Dual-activation protocol for tandem cross-aldol condensation: An easy and highly efficient synthesis of α,α'-bis(aryl/alkylmethylidene)ketones. J. Molecular Catal. A: Chem. 260 (1-2), 235-240. DOI:10.1016/j.molcata.2006.07.018.10.1016/j.molcata.2006.07.018Search in Google Scholar

Zabicky, J. (1961). The kinetics and mechanism of carbonyl-methylene condensation reactions. Part XI. Stereochemistry of the products. J. Chem. Soc. 683-687. DOI: 10.1039/JR9610000683.10.1039/JR9610000683Search in Google Scholar

An-Guo, Y., Luo, L., Guo-Feng, W., Xin-Zhi, C., Wei-Dong, Y., Jian-Hui, C. & Kai-Yuan. (2009). Knoevenagel condensation catalyzed by DBU Brönsted ionic liquid without solvent. Z. Chem. Res. Chin. Univ. 25 (6), 876-881.Search in Google Scholar

Al-Hazimi, H. M. A. & Al-Alshaikh, M. A. (2010). Microwave assisted synthesis of substituted furan-2-carboxaldehydes and their reactions. J. Saudi Chem. Soc. Available online. DOI:10.1016/j.jscs.2010.04.009.10.1016/j.jscs.2010.04.009Search in Google Scholar

Evdokimov, N. M., Kireev, A. S., Yakovenko, A. A., Antipin, M. Yu., Magedov, I. V. & Kornienko, A. (2007). One-step synthesis of heterocyclic privileged medicinal Scaffolds by a multicomponent reaction of malononitrile with aldehydes and thiols. J. Org. Chem. 72 (9), 3443-3453. DOI: 10.1021/jo070114u.10.1021/jo070114u17408286Search in Google Scholar

Sridhar, M., Rao, R. M., Baba, N. H. K. & Kumbhare, R. M. (2007). Microwave accelerated Gewald reaction: synthesis of 2-aminothiophenes. Tetrahedron Lett. 48(18), 3171-3172. DOI:10.1016/j.tetlet.2007.03.052.10.1016/j.tetlet.2007.03.052Search in Google Scholar

Sabnis, R. W., Rangnekar, D. W. & Sonawane, N. D. (1999). 2-Aminothiophenes by the gewald reaction. J. Heterocycl. Chem. 36 (2), 333-345. DOI: 10.1002/jhet.5570360203.10.1002/jhet.5570360203Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik