Uneingeschränkter Zugang

Synthesis of carbon nanotubes via chemical vapor deposition by using rareearth metals as catalysts


Zitieren

Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature. 354, 56-58. DOI: 10.1038/354056a0.10.1038/354056a0Search in Google Scholar

Treacy, M. M. J., Ebbesen, T. W. & Gibson, J. M. (1996). Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature. 381, 678-680. DOI: 10.1038/381678a0.10.1038/381678a0Search in Google Scholar

Wong, E. W., Sheehan, P. E. & Lieber, C. M. (1997). Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science. 26, 1971-1975 DOI: 10.1126/science.277.5334.1971.10.1126/science.277.5334.1971Search in Google Scholar

Frank, S., Poncharal, P. Wang, Z. L. & De Heer, W. A. (1998). Carbon Nanotube Quantum Resistors. Science. 280, 1744-1746. DOI: 10.1126/science.280.5370.1744.10.1126/science.280.5370.1744Search in Google Scholar

Gong, Q., Li, Z., Zhou, X., Wu, J., Wang, Y. & Liang, J. (2005). Synthesis Synthesis and characterization of in situ grown carbon nanofiber/nanotube reinforced carbon/carbon composites. Carbon. 43, 2426-2429 DOI: 10.1016/j.carbon.2005.04.024.10.1016/j.carbon.2005.04.024Search in Google Scholar

Ebbesen, T. W. & Ajayan, P. M. (1992). Large-scale synthesis of carbon nanotubes. Nature. 358, 220-222 DOI: 10.1038/358220a0.10.1038/358220a0Search in Google Scholar

Thess, A., Lee, R., Nikolaev, P., Dai, H. J., Petit, P. & Robert, J., et al. (1996). Crystalline Ropes of Metallic Carbon nanotubes. Science. 273, 483-487. DOI: 10.1126/science.273.5274.483.10.1126/science.273.5274.483Search in Google Scholar

Murakami, Y., Miyauchi, Y, Chiashi, S. & Maruyama, S. (2003). Characterization of Single-Walled Carbon Nanotubes Catalytically Synthesized from Alcohol. Chem. Phys. Lett. 374, 53 DOI: 10.1016/S0009-2614(03)00687-0.10.1016/S0009-2614(03)00687-0Search in Google Scholar

Borowiak-Palen, E., Bachmatiuk, A., Rümmeli, M. H., Costa, S. & Kalenczuk, R. J. (2008). Modifying CVD synthesized carbon nanotubes via the carbon feed rate. Physica E. 40, 2227-2230 DOI:10.1016/j.physe.2007.10.105.10.1016/j.physe.2007.10.105Search in Google Scholar

Steplewska, A., Jedrzejewski, R. & Borowiak-Palen, E. (2008). Preperation and characterization of catalyst mix FeCo/MgO for carbon nanotubes growth. Polish Journal of Chemical Technology. 10, 3-3. DOI: 10.2478/v10026-008-0028-0.10.2478/v10026-008-0028-0Search in Google Scholar

Suh, W. H., Suslick, K. S., Stucky, G. D. & Suh, Y. H. (2009). Nanotechnology, nanotoxicology, and neuroscience. Progress in Neurobiology. 87(3), 133-70. DOI: 10.1016/j.pneurobio.2008.09.009.10.1016/j.pneurobio.2008.09.009Search in Google Scholar

Raffa, V., et al. (2008). Can the properties of carbon nanotubes influence their internalization by living cells? Carbon. 46(12), 1600-1610. DOI: 10.1016/j.carbon.2008.06.053.10.1016/j.carbon.2008.06.053Search in Google Scholar

Shvedova, A. A., et al. (2009). Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: Two faces of Janus? Pharmacology & Therapeutics. 121 (2), 192-204. DOI: doi:10.1016/j.pharmthera.2008.10.009.10.1016/j.pharmthera.2008.10.009Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik