Uneingeschränkter Zugang

BEM and FEM results of displacements in a poroelastic column

International Journal of Applied Mathematics and Computer Science's Cover Image
International Journal of Applied Mathematics and Computer Science
Hybrid and Ensemble Methods in Machine Learning (special section, pp. 787 - 881), Oscar Cordón and Przemysław Kazienko (Eds.)

Zitieren

Albers, B. (2010). Modeling and Numerical Analysis of Wave Propagation in Saturated and Partially Saturated Porous Media, Postdoctoral thesis, Veröffentlichungen des Grundbauinstitutes der Technischen Universität Berlin, Vol. 48, Shaker, Aachen.Search in Google Scholar

Allard, J.F. (1993). Propagation of Sound in Porous Media. Modelling Sound Absorbing Materials, Elsevier, Essex.10.1007/978-94-011-1866-8Search in Google Scholar

Atalla, N., Hamdi, A.M. and Panneton, R. (2001). Enhanced weak integral formulation for mixed (u,p) poroelastic equations, Journal of the Acoustical Society of America 109(6): 3065-3068.10.1121/1.1365423Search in Google Scholar

Atalla, N., Panneton, R. and Debergue, P. (1998). A mixed pressure-displacement formulation for poroelastic materials, Journal of the Acoustical Society of America 104(3): 1444-1452.10.1121/1.424355Search in Google Scholar

Biot, M.A. (1941). General theory of three dimensional consolidation, Journal of Applied Physics 12(2): 155-164.10.1063/1.1712886Search in Google Scholar

Biot, M.A. (1956). Theory of propagation of elastic waves in a fluid saturated porous solid, I: Low frequency range, II: Higher frequency range, Journal of the Acoustical Society of America 28(2): 168-191.10.1121/1.1908241Search in Google Scholar

Bonnet, G. (1987). Basic singular solutions for a poroelastic medium in the dynamic range, Journal of the Acoustical Society of America 82(5): 1758-1762.10.1121/1.395169Search in Google Scholar

Cheng, A.H.-D., Badmus, T. and Beskos, D.E. (1991). Integral equations for dynamic poroelasticity in frequency domain with BEM solution, Journal of Engineering Mechanics (ASCE) 117(5): 1136-1157.10.1061/(ASCE)0733-9399(1991)117:5(1136)Search in Google Scholar

de Boer, R. and Ehlers, W. (1986). Theorie der Mehrkomponentenkontinua mit Anwendung auf bodenmechanische Probleme, Teil I, Technical Report 40, Forschungsberichte aus dem Fachbereich Bauwesen der Universität-GH Essen, Essen.Search in Google Scholar

Dominguez, J. (1992). Boundary element approach for dynamic poroelastic problems, International Journal for Numerical Methods in Engineering 35(2): 307-324.10.1002/nme.1620350206Search in Google Scholar

Eringen, A.C. and Suhubi, S.S. (1975). Elastodynamics, Vol. II, Academic Press, New York, NY.Search in Google Scholar

Fischer, M. (2004). The Fast Multipole Boundary Element Method and its Application to Structure-Acoustic Field Interaction, Ph.D. thesis, Universität Stuttgart, Stuttgart.Search in Google Scholar

Goodman, M.A. and Cowin, S.C. (1972). A continuum theory of granular materials, Archive for Rational Mechanics and Analysis 44(4): 249-266.10.1007/BF00284326Search in Google Scholar

Göransson, P. (1995). A weighted residual formulation of the acoustic wave propagation through a flexible porous material and comparison with a limp material model, Journal of Sound and Vibration 182(3): 479-494.10.1006/jsvi.1995.0211Search in Google Scholar

Hild, P. (2011). A sign preserving mixed finite element approximation for contact problems, International Journal of Applied Mathematics and Computer Science 21(3): 487-498, DOI: 10.2478/v10006-011-0037-7.10.2478/v10006-011-0037-7Search in Google Scholar

Holler, S. (2006). Dynamisches Mehrphasenmodell mit hypoplastischer Materialformulierung der Feststoffphase, Ph.D. thesis, RWTH Aachen, Aachen.Search in Google Scholar

Kelder, O. and Smeulders, D.M.J. (1997). Observation of the Biot slow wave in water-saturated Nivelsteiner sandstone, Geophysics 62(6): 1794-1796.10.1190/1.1444279Search in Google Scholar

Kogut, J. and Ciurej, H. (2010). A vehicle-track-soil dynamic interaction problem in sequential and parallel formulation, International Journal of Applied Mathematics and Computer Science 20(2): 295-303, DOI: 10.2478/v10006-010-0022-6.10.2478/v10006-010-0022-6Search in Google Scholar

Korsawe, J. and Starke, G. (2005). A least-squares mixed finite element method for Biot’s consolidation problem in porous media, SIAM Journal on Numerical Analysis 43(1): 318-339.10.1137/S0036142903432929Search in Google Scholar

Korsawe, J., Starke, G., Wang, W. and Kolditz, O. (2006). Finite element analysis of poro-elastic consolidation in porous media: Standard and mixed approaches, Computer Methods in Applied Mechanics and Engineering 195(9-12): 1096-1115.10.1016/j.cma.2005.04.011Search in Google Scholar

Lewis, R.W. and Schrefler, BA. (1998). The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, Wiley, Chichester.Search in Google Scholar

Naumann, K. (2004). Implementierung eines Finiten Elementes in das FEM-Programmsystem ANSYS zur gekoppelten Fluid-Struktur Berechnung poröser Medien, Master’s thesis, TU Berlin, Berlin.Search in Google Scholar

Panneton, R. and Atalla, N. (1997). An efficient finite element scheme for solving the threedimensional poroelasticity problem in acoustics, Journal of the Acoustical Society of America 101(6): 3287-3298.10.1121/1.418345Search in Google Scholar

Plona, T. J. (1980). Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies, Applied Physics Letters 36(4): 259-261.10.1063/1.91445Search in Google Scholar

Rackwitz, F., Naumann, K. and Savidis, S.A. (2005). Implementierung eines Finiten Elements zur Konsolidationsberechnung mit ANSYS, 23rd CAD-FEM Users’ Meeting 2005, Bonn, Germany, (on CD-ROM/DVD).Search in Google Scholar

Savidis, S.A., Albers, B., Tas¸an, H.E. and Savvidis, G. (2011). Finite-Elemente-Berechnungen quasistatischer und dynamischer Probleme mit einem poroelastischen Zweikomponentenmodell, Bauingenieur 5: 241-249.Search in Google Scholar

Savvidis, G. (2009). Implementierung eines Finiten Elements in das FEM-Programmsystem ANSYS zur gekoppelten Fluid-Struktur Berechnung von wassergesättigten Böden, Master’s thesis, TU Berlin, Berlin.Search in Google Scholar

Schanz, M. (2001). Application of 3d time domain boundary element formulation to wave propagation in poroelastic solids, Engineering Analysis with Boundary Elements 25(4-5): 363-376.10.1016/S0955-7997(01)00022-4Search in Google Scholar

Schanz, M. and Cheng, A.H.-D. (2000). Transient wave propagation in a one-dimensional poroelastic column, Acta Mechanica 145(1-4): 1-18.10.1007/BF01453641Search in Google Scholar

Schrefler, B.A. and Scotta, R. (2001). A fully coupled dynamic model for two-phase fluid flow in deformable porous media, Computer Methods in Applied Mechanics and Engineering 190(24-25): 3223-3246.10.1016/S0045-7825(00)00390-XSearch in Google Scholar

Taşan, H.E. (2012). Zur Dimensionierung der Monopile-Gründungen von Offshore-Windenergieanlagen, Ph.D. thesis, Veröffentlichungen des Grundbauinstitutes der Technischen Universität Berlin, Vol. 52, Aachen.Search in Google Scholar

Taşan, H.E., Rackwitz, F. and Savidis, S.A. (2010). Behaviour of cyclic laterally loaded diameter monopiles in saturated sand, Proceedings of the 7th European Conference of Numerical Methods in Geotechnical Engineering, Trondheim, Norway, pp. 889-894.Search in Google Scholar

von Estorff, O. and Hagen, C. (2006). Iterative coupling of FEM and BEM in 3D transient elastodynamics, Engineering Analysis with Boundary Elements 30(7): 611-622.10.1016/j.enganabound.2006.01.007Search in Google Scholar

von Terzaghi, K. (1936). The shearing resistance of saturated soils and the angle between the planes of shear, 1st International Conference on Soil Mechanics and Foundation Engineering, Cambridge, MA, USA, Vol. 1, pp. 54-56.Search in Google Scholar

Wilmanski, K. (1996). Porous media at finite strains-The new model with the balance equation for porosity, Archives of Mechanics 48(4): 591-628.Search in Google Scholar

Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Schrefler, B.A. and Shiomi, T. (1999). Computational Geomechanics with Special Reference to Earthquake Engineering, John Wiley & Sons, West Sussex.Search in Google Scholar

Zienkiewicz, O.C. and Shiomi, T. (1984). Dynamic behaviour of saturated porous media: The generalized Biot formulation and its numerical solution, International Journal for Numerical and Analytical Methods in Geomechanics 8(1): 71-96.10.1002/nag.1610080106Search in Google Scholar

eISSN:
2083-8492
ISSN:
1641-876X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Mathematik, Angewandte Mathematik