Uneingeschränkter Zugang

CO2 Emission Costs Due to the Production and Use of Vehicles in the Context of Automotive Development


Zitieren

1. Ağbulut, Ü., & Bakir, H. (2019) The investigation on economic and ecological impacts of tendency to electric vehicles instead of internal combustion engines. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(1), 25-36.10.29130/dubited.457914 Search in Google Scholar

2. Berckmans, G., Messagie, M., Smekens, J., Omar, N., Vanhaverbeke, L., & Van Mierlo, J. (2017). Cost projection of state of the art lithium-ion batteries for electric vehicles up to 2030. Energies, 10(9), 1314.10.3390/en10091314 Search in Google Scholar

3. Borucka, A., Wiśniowski, P., Mazurkiewicz, D., Świderski, A. (2021) Laboratory measurements of vehicle exhaust emissions in conditions reproducing real traffic. Measurement, 174, 108998, https://doi.org/10.1016/j.measurement.2021.108998.10.1016/j.measurement.2021.108998 Search in Google Scholar

4. Breyer, C., Koskinen, O., Blechinger, P. (2015) Profitable climate change mitigation: The case of greenhouse gas emission reduction benefits enabled by solar photovoltaic systems. Pergamon, 610-628.10.1016/j.rser.2015.04.061 Search in Google Scholar

5. Bubeck, S., Tomaschek, J., & Fahl, U. (2016) Perspectives of electric mobility: Total cost of ownership of electric vehicles in Germany. Transport Policy, 50, 63-77.10.1016/j.tranpol.2016.05.012 Search in Google Scholar

6. Chatzikomis, E.J., Spentzas, K.N., Mamalis, A.G. (2014) Enviromental and economic effects of widespread intoruction of electric vehicles in Greece. European Transport Research Review, 6, 365-376.10.1007/s12544-014-0137-1 Search in Google Scholar

7. Chłopek, Z. (2016) Synthesis of driving cycles in accordance with the criterion of similarity of frequency characteristics. Maintenance and Reliability, 18(4), 572-577.10.17531/ein.2016.4.12 Search in Google Scholar

8. Eaves, S., & Eaves, J. (2004) A cost comparison of fuel-cell and battery electric vehicles. Journal of Power Sources, 130(1-2), 208-212.10.1016/j.jpowsour.2003.12.016 Search in Google Scholar

9. Eliasz, J., Mrozik, M. (2011) Wybrane aspekty dotyczące nakładów materiałowych i energetycznych w fazie budowy samochodów osobowych, Autobusy. Technika, Eksploatacja, Systemy transportowe, 5. Search in Google Scholar

10. Europe Communication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions (2020) A hydrogen strategy for a climate – neutral, Brussel. Search in Google Scholar

11. Gis, M., Bednarski, M., Wiśniowski, P. (2018) Comparative analysis of NEDC and WLTC homologation tests for vehicle tests on a chassis dynamometer. Journal of KONES, 25(3), 189-196. Search in Google Scholar

12. Hardman, S., Chandan, A., Tal, G., & Turrentine, T. (2017) The effectiveness of financial purchase incentives for battery electric vehicles–A review of the evidence. Renewable and Sustainable Energy Reviews, 80, 1100-1111.10.1016/j.rser.2017.05.255 Search in Google Scholar

13. Hidrue, M. K., Parsons, G. R., Kempton, W., & Gardner, M. P. (2011) Willingness to pay for electric vehicles and their attributes. Resource and energy economics, 33(3), 686-705.10.1016/j.reseneeco.2011.02.002 Search in Google Scholar

14. Hydrogen Council. (2017) Hydrogen scaling up. A sustainable pathway for the global energy transition. Search in Google Scholar

15. International Energy Agency. (2015) Technology Roadmap Hydrogen Fuel Cell, Paris. Search in Google Scholar

16. International Partnership Hydrogen Economy, (2021) https://iphe.net, online 14.06.2021. Search in Google Scholar

17. Kadlecek, B., Pejsa, L., Pexa, M. (2002) Virtual vehicle-driving cycle application for measuring emission and fuel consumption on hdvs. Maintenance and Reliability, 4(16)/2002, 40-42. Search in Google Scholar

18. Keršys, A., Kalisinskas, D., Pukalskas, S., Vilkauskas, A., Keršys, R., Makaras, R. (2013) Investigation of the influence of hydrogen used in internal combustion engines on exhaust emission. Maintenance and Reliability, 4, 384-389. Search in Google Scholar

19. Kruczyński, S., Ślęzak, M., W., Orliński, P. (2016) Evaluation of the impact of combustion hydrogen addition on operating properties of self-ignition engine. Maintenance and Reliability, 18(3): 343-347.10.17531/ein.2016.3.4 Search in Google Scholar

20. Lassila, J., Haakana, J., Partanen, J., Koivuranta, J., & Peltonen, S. (2011) Network effects of electric vehicles-case from nordic country. In: Proceedings of the CIRED 21st International Conference on Electricity Distribution, Frankfurt, Germany, 6-9. Search in Google Scholar

21. Lévay, P. Z., Drossinos, Y., & Thiel, C. (2017) The effect of fiscal incentives on market penetration of electric vehicles: A pairwise comparison of total cost of ownership. Energy Policy, 105, 524-533.10.1016/j.enpol.2017.02.054 Search in Google Scholar

22. Masnadi, M., El-Houjeiri, Schunack, D., Y. Li, J. (2018) Englander Global carbon intensity of crude oil production. Science, 361(6405), 851-853. DOI: 10.1126/science.aar6859.30166477 Open DOISearch in Google Scholar

23. Menes, M. (2021) Stan i kierunki rozwoju wodoryzacji gospodarki ze szczególnym uwzględnieniem transportu, WKiŁ. Search in Google Scholar

24. Menes, M. (2012) Stan i kierunki rozwoju światowego przemysłu motoryzacyjnego na progu drugiej dekady XXI wieku. Zeszyty naukowe ITS, Warsaw. Search in Google Scholar

25. Menes, M., Wiśniowski, P., (2019) The profitability of disposing of vehicles fulfilling the older euro standards in terms of CO2 emission. Journal of KONES, 26(1), 89-94. Search in Google Scholar

26. Palmer, K., Tate, J. E., Wadud, Z., & Nellthorp, J. (2018) Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan. Applied energy, 209, 108-119.10.1016/j.apenergy.2017.10.089 Search in Google Scholar

27. Pielecha, I., Pielecha, J. (2020) Simulation analysis of electric vehicles energy consumption in driving tests. Maintenance and Reliability, 22(1), 130-137.10.17531/ein.2020.1.15 Search in Google Scholar

28. Puchalski, A., Ślęzak, M., Komorska, I., Wiśniowski, P. (2018) Multifractal analysis vehicle’s inuse speed profile for application in driving cycles. Maintenance and Reliability, 20(2), 177-181.10.17531/ein.2018.2.02 Search in Google Scholar

29. Regulation (EU) 2017/1151. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R1151&from=PL. Search in Google Scholar

30. Rogowska D., Jakubiec J. (2016). Emisja GHG w cyklu życia paliw silnikowych, nafta i gaz nr 10/2016 ss.857-862. Search in Google Scholar

31. Rupp, M., Handschuh, N., Rieke, C., & Kuperjans, I. (2019) Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany. Applied energy, 237, 618-634.10.1016/j.apenergy.2019.01.059 Search in Google Scholar

32. ScienceDaily (2011) Global carbon emissions reach record 10 billion tons, threatening 2 degree target, 6 December 2011, https://www.sciencedaily.com/releases/2011/12/111204144648.htm. Search in Google Scholar

33. Sternberg, A., Hank, Ch., Hebling, Ch. (2019) Greenhouse gas emissions for battery electric and fuel cell electric vehicles with ranges over 3000 kilometers, Frauenhofer Institute for Solar Energy Systems ISE, Freiburg. Germany. Search in Google Scholar

34. Szczepański, T., Wiśniowski, P. (2017) Typowe zadania realizowane przez silnik spalinowy w czasie eksploatacji oraz ich odwzorowanie w hamownianych testach jezdnych. Transport Samochodowy, 1, 85-104. Search in Google Scholar

35. Wang, S., Li, J., & Zhao, D. (2017) The impact of policy measures on consumer intention to adopt electric vehicles: Evidence from China. Transportation Research Part A: Policy and Practice, 105, 14-26.10.1016/j.tra.2017.08.013 Search in Google Scholar

36. Wiśniowski, P., Ślęzak, M., Niewczas, A. (2019) Simulation of road traffic conditions on a chassis dynamometer. Archiwum Motoryzacji, 84.10.14669/AM.VOL84.ART12 Search in Google Scholar

37. Wu, G., Inderbitzin, A., & Bening, C. (2015) Total cost of ownership of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments. Energy Policy, 80, 196-214.10.1016/j.enpol.2015.02.004 Search in Google Scholar

eISSN:
1407-6179
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere