Uneingeschränkter Zugang

σ-Continuous Functions and Related Cardinal Characteristics of the Continuum

  
04. Nov. 2020

Zitieren
COVER HERUNTERLADEN

A function f : XY between topological spaces is called σ-continuous (resp. ̄σ-continuous) if there exists a (closed) cover {Xn}nω of X such that for every nω the restriction fXn is continuous. By 𝔠 σ (resp. 𝔠¯σ)we denote the largest cardinal κ ≤ 𝔠 such that every function f : X → ℝ defined on a subset X ⊂ ℝ of cardinality |X| is σ-continuous (resp. ¯σ-continuous). It is clear that ω1 ≤ 𝔠¯σ ≤ 𝔠 σ ≤ 𝔠.We prove that 𝔭 ≤ 𝔮0 = 𝔠¯σ =min{𝔠 σ, 𝔟, 𝔮 }≤ 𝔠 σ ≤ min{non(ℳ), non(𝒩)}.

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
3 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Mathematik, Mathematik, Allgemeines