This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Tam C, Golebiowski M, Seiner J. On the two components of turbulent mixing noise from supersonic jets. In: Aeroacoust Conf. State College, PA: Am Inst Aeronaut Astronaut; 1996. https://doi.org/10.2514/6.1996-1716.TamCGolebiowskiMSeinerJ.On the two components of turbulent mixing noise from supersonic jets. In: Aeroacoust Conf. State College, PA: Am Inst Aeronaut Astronaut; 1996. https://doi.org/10.2514/6.1996-1716.Search in Google Scholar
Nonomura T, Honda H, Nagata Y, Yamamoto M, Morizawa S, Obayashi S, et al. Plate-angle effects on acoustic waves from supersonic jets impinging on inclined plates. AIAA J. 2016;54(3):816–827. https://doi.org/10.2514/1.j054152.NonomuraTHondaHNagataYYamamotoMMorizawaSObayashiSPlate-angle effects on acoustic waves from supersonic jets impinging on inclined plates. AIAA J. 2016;54(3):816–827. https://doi.org/10.2514/1.j054152.Search in Google Scholar
Kandula M. Prediction of turbulent jet mixing noise reduction by water injection. AIAA J. 2008;46(11):2714–2722. https://doi.org/10.2514/1.33599.KandulaM.Prediction of turbulent jet mixing noise reduction by water injection. AIAA J. 2008;46(11):2714–2722. https://doi.org/10.2514/1.33599.Search in Google Scholar
Haynes J, Kenny R. Modifications to the NASA SP-8072 distributed source method II for Ares I lift-off environment predictions. In: 15th AIAA/CEAS Aeroacoust Conf (30th AIAA Aeroacoust Conf). Am Inst Aeronaut Astronaut; 2009. https://doi.org/10.2514/6.2009-3160.HaynesJKennyR.Modifications to the NASA SP-8072 distributed source method II for Ares I lift-off environment predictions. In: 15th AIAA/CEAS Aeroacoust Conf (30th AIAA Aeroacoust Conf). Am Inst Aeronaut Astronaut; 2009. https://doi.org/10.2514/6.2009-3160.Search in Google Scholar
Batutina TY, Oliynik VN. Napivempirychne otsiniuvannia akustychnykh navantazhen na holovnu chastynu rakety pry nestandartnii konfihuratsii startovykh sporud [Semiempirical assessment of acoustic loads on the rocket head with a nonstandard configuration of launch facilities]. BTSNUKPhM. 2023;(2):84–87. [in Ukrainian]. https://doi.org/10.17721/1812-5409.2023/2.9.BatutinaTYOliynikVN.Napivempirychne otsiniuvannia akustychnykh navantazhen na holovnu chastynu rakety pry nestandartnii konfihuratsii startovykh sporud [Semiempirical assessment of acoustic loads on the rocket head with a nonstandard configuration of launch facilities]. BTSNUKPhM. 2023;(2):84–87. [in Ukrainian]. https://doi.org/10.17721/1812-5409.2023/2.9.Search in Google Scholar
Kudryavtsev VV. Acoustic environment at jet interaction with a plate. In: Inter.noise 2000. 29th Int Congr Exhibit Noise Control Engineering. Nice, France: SFA; 2000.KudryavtsevVV.Acoustic environment at jet interaction with a plate. In: Inter.noise 2000. 29th Int Congr Exhibit Noise Control Engineering. Nice, France: SFA; 2000.Search in Google Scholar
Ffowcs Williams JE. The noise from turbulence convected at high speed. Philosophical Trans Roy Soc Lond A. 1963;255(1061):469–503. https://doi.org/10.1098/rsta.1963.0010.Ffowcs WilliamsJE.The noise from turbulence convected at high speed. Philosophical Trans Roy Soc Lond A. 1963;255(1061):469–503. https://doi.org/10.1098/rsta.1963.0010.Search in Google Scholar
Lighthill MJ. Jet noise. AIAA J. 1963;1(7):1507–1517. https://doi.org/10.2514/3.1848.LighthillMJ.Jet noise. AIAA J. 1963;1(7):1507–1517. https://doi.org/10.2514/3.1848.Search in Google Scholar
Eldred KM. Acoustic loads generated by the propulsion system. Washington, DC: NASA; 1971. Rep No.: NASA-SP-8072.EldredKM.Acoustic loads generated by the propulsion system. Washington, DC: NASA;1971. Rep No.: NASA-SP-8072.Search in Google Scholar
Sutherland LC. Progress and problems in rocket noise prediction for ground facilities. In: 15th Aeroacoust Conf. Long Beach, CA: Am Inst Aeronaut Astronaut; 1993. https://doi.org/10.2514/6.1993-4383.SutherlandLC.Progress and problems in rocket noise prediction for ground facilities. In: 15th Aeroacoust Conf. Long Beach, CA: Am Inst Aeronaut Astronaut; 1993. https://doi.org/10.2514/6.1993-4383.Search in Google Scholar
Plotkin K, Sutherland L, Vu B. Lift-off acoustics predictions for the Ares I launch pad. In: 15th AIAA/CEAS Aeroacoust Conf (30th AIAA Aeroacoust Conf). Miami, FL: Am Inst Aeronaut Astronaut; 2009. https://doi.org/10.2514/6.2009-3163.PlotkinKSutherlandLVuB.Lift-off acoustics predictions for the Ares I launch pad. In: 15th AIAA/CEAS Aeroacoust Conf (30th AIAA Aeroacoust Conf). Miami, FL: Am Inst Aeronaut Astronaut; 2009. https://doi.org/10.2514/6.2009-3163.Search in Google Scholar
Sutton GP, Biblarz O. Rocket propulsion elements. New York: John Wiley & Sons; 2001.SuttonGPBiblarzO.Rocket propulsion elements. New York: John Wiley & Sons; 2001.Search in Google Scholar
Varnier J. Experimental study and simulation of rocket engine freejet noise. AIAA J. 2001;39(10):1851–9. https://doi.org/10.2514/2.1199.VarnierJ.Experimental study and simulation of rocket engine freejet noise. AIAA J. 2001;39(10):1851–9. https://doi.org/10.2514/2.1199.Search in Google Scholar
Lubert CP, Gee KL, Tsutsumi S. Supersonic jet noise from launch vehicles: 50 years since NASA SP-8072. J Acoust Soc Am. 2022;151(2):752–791. https://doi.org/10.1121/10.0009160.LubertCPGeeKLTsutsumiS.Supersonic jet noise from launch vehicles: 50 years since NASA SP-8072. J Acoust Soc Am. 2022;151(2):752–791. https://doi.org/10.1121/10.0009160.Search in Google Scholar
Gee KL. A tale of two curves and their influence on rocket and supersonic jet noise research. J Acoust Soc Am. 2021;149(4):2159–2162. https://doi.org/10.1121/10.0003938.GeeKL.A tale of two curves and their influence on rocket and supersonic jet noise research. J Acoust Soc Am. 2021;149(4):2159–2162. https://doi.org/10.1121/10.0003938.Search in Google Scholar
James MM, Salton AR, Gee KL, Neilsen TB. Comparative analysis of NASA SP-8072’s core length with full-scale rocket data. Trans Japan Soc Aeronaut Space Sci. 2016;14(ists30):Po. https://doi.org/10.2322/tastj.14.po_2_17.JamesMMSaltonARGeeKLNeilsenTB.Comparative analysis of NASA SP-8072’s core length with full-scale rocket data. Trans Japan Soc Aeronaut Space Sci. 2016;14(ists30):Po. https://doi.org/10.2322/tastj.14.po_2_17.Search in Google Scholar
Horvay G, Nagamatsu H. Supersonic jet noise. In: 8th Aerospace Sci Meet. New York: Am Inst Aeronaut Astronaut; 1970. https://doi.org/10.2514/6.1970-237.HorvayGNagamatsuH.Supersonic jet noise. In: 8th Aerospace Sci Meet. New York: Am Inst Aeronaut Astronaut; 1970. https://doi.org/10.2514/6.1970-237.Search in Google Scholar
Smith WO III. An empirical and computational investigation into the acoustical environment at the launch of a space vehicle. Auburn, AL: Auburn Univ; 2013.SmithWOIIIAn empirical and computational investigation into the acoustical environment at the launch of a space vehicle. Auburn, AL: Auburn Univ; 2013.Search in Google Scholar
James MM, Salton AR, Gee KL, Neilsen TB, McInerny SA, Kenny RJ. Modification of directivity curves for a rocket noise model. In: Proc Mtgs Acoust. Kansas City, MO: Am Soc Acoust; 2014. https://doi.org/10.1121/1.4870986.JamesMMSaltonARGeeKLNeilsenTBMcInernySAKennyRJ.Modification of directivity curves for a rocket noise model. In: Proc Mtgs Acoust. Kansas City, MO: Am Soc Acoust; 2014. https://doi.org/10.1121/1.4870986.Search in Google Scholar