Uneingeschränkter Zugang

Airfoil Tonal Noise Prediction Using Urans


Zitieren

Rizzi, S.A. “Urban Air Mobility Noise: Current Practice, Gaps, and Recommendations.” No. NASA/TP-20205007433 (2020). Rizzi S.A. Urban Air Mobility Noise: Current Practice, Gaps, and Recommendations . No. NASA/TP-20205007433 ( 2020 ) . Search in Google Scholar

Brooks, F., Pope, D., and Marcolini, A. Airfoil Self-Noise and Prediction, No. L-16528, NASA, 1989. Brooks F. Pope D. and Marcolini A . Airfoil Self-Noise and Prediction , No. L-16528 , NASA , 1989 . Search in Google Scholar

Paterson, R.W., Vogt, P.G., Fink, M.R., and Munch, C.L. “Vortex Noise of Isolated Airfoils.” Journal of Aircraft Vol. 10 No. 5 (1973): pp. 296–302. Paterson R.W. Vogt P.G. Fink M.R. and Munch C.L. Vortex Noise of Isolated Airfoils . Journal of Aircraft Vol. 10 No. 5 ( 1973 ): pp. 296 302 . Search in Google Scholar

Tam, C.K.W. “Discrete Tones of Isolated Airfoils.” The Journal of the Acoustical Society of America Vol. 55 No. 6 (1974): p. 5. Tam C.K.W. Discrete Tones of Isolated Airfoils . The Journal of the Acoustical Society of America Vol. 55 No. 6 ( 1974 ): p. 5 . Search in Google Scholar

Arbey, H. and Bataille, J. “Noise Generated by Airfoil Profiles Placed in a Uniform Laminar Flow.” Journal of Fluid Mechanics Vol. 134 No. 1 (1983): p. 33. Arbey H. and Bataille J . Noise Generated by Airfoil Profiles Placed in a Uniform Laminar Flow . Journal of Fluid Mechanics Vol. 134 No. 1 ( 1983 ): p. 33 . Search in Google Scholar

McAlpine, A., Nash, E.C., and Lowson, M.V. “On the Generation of Discrete Frequency Tones by the Flow around an Aerofoil.” Journal of Sound and Vibration Vol. 222 No. 5 (1999): pp. 753–779. McAlpine A. Nash E.C. and Lowson M.V. On the Generation of Discrete Frequency Tones by the Flow around an Aerofoil . Journal of Sound and Vibration Vol. 222 No. 5 ( 1999 ): pp. 753 779 . Search in Google Scholar

Lowson, M., Fiddes, S., and Nash, E. “Laminar Boundary Layer Aero-Acoustic Instabilities.” 32nd Aerospace Sciences Meeting and Exhibi. American Institute of Aeronautics and Astronautics. Reno, NV, U.S.A, 1994. Lowson M. Fiddes S. and Nash E . Laminar Boundary Layer Aero-Acoustic Instabilities . 32nd Aerospace Sciences Meeting and Exhibi . American Institute of Aeronautics and Astronautics . Reno, NV, U.S.A , 1994 . Search in Google Scholar

Pröbsting, S., Serpieri, J., and Scarano, F. “Experimental Investigation of Aerofoil Tonal Noise Generation.” Journal of Fluid Mechanics Vol. 747 (2014): pp. 656–687. Pröbsting S. Serpieri J. and Scarano F . Experimental Investigation of Aerofoil Tonal Noise Generation . Journal of Fluid Mechanics Vol. 747 ( 2014 ): pp. 656 687 . Search in Google Scholar

Casalino, D., Grande, E., Romani, G., Ragni, D., and Avallone, F. “Definition of a Benchmark for Low Reynolds Number Propeller Aeroacoustics.” Aerospace Science and Technology Vol. 113 (2021): p. 106707. Casalino D. Grande E. Romani G. Ragni D. and Avallone F . Definition of a Benchmark for Low Reynolds Number Propeller Aeroacoustics . Aerospace Science and Technology Vol. 113 ( 2021 ): p. 106707 . Search in Google Scholar

Menter, F., Hüppe, A., Matyushenko, A., and Kolmogorov, D. “An Overview of Hybrid RANS–LES Models Developed for Industrial CFD.” Applied Sciences Vol. 11 No. 6 (2021): p. 2459. Menter F. Hüppe A. Matyushenko A. and Kolmogorov D . An Overview of Hybrid RANS–LES Models Developed for Industrial CFD . Applied Sciences Vol. 11 No. 6 ( 2021 ): p. 2459 . Search in Google Scholar

Sandberg, R.D., Jones, L.E., Sandham, N.D., and Joseph, P.F. “Direct Numerical Simulations of Tonal Noise Generated by Laminar Flow Past Airfoils.” Journal of Sound and Vibration Vol. 320 No. 4–5 (2009): pp. 838–858. Sandberg R.D. Jones L.E. Sandham N.D. and Joseph P.F. Direct Numerical Simulations of Tonal Noise Generated by Laminar Flow Past Airfoils . Journal of Sound and Vibration Vol. 320 No. 4–5 ( 2009 ): pp. 838 858 . Search in Google Scholar

Desquesnes, G., Terracol, M., and Sagaut, P. “Numerical Investigation of the Tone Noise Mechanism over Laminar Airfoils.” Journal of Fluid Mechanics Vol. 591 (2007): pp. 155–182. Desquesnes G. Terracol M. and Sagaut P . Numerical Investigation of the Tone Noise Mechanism over Laminar Airfoils . Journal of Fluid Mechanics Vol. 591 ( 2007 ): pp. 155 182 . Search in Google Scholar

De Gennaro, M., Kühnelt, H., and Zanon, A. “Numerical Prediction of the Tonal Airborne Noise for a NACA 0012 Aerofoil at Moderate Reynolds Number using a Transitional URANS Approach.” Archives of Acoustics Vol. 42 No. 4 (2017): pp. 653–675. De Gennaro M. Kühnelt H. and Zanon A . Numerical Prediction of the Tonal Airborne Noise for a NACA 0012 Aerofoil at Moderate Reynolds Number using a Transitional URANS Approach . Archives of Acoustics Vol. 42 No. 4 ( 2017 ): pp. 653 675 . Search in Google Scholar

Oerlemans, S. Wind Tunnel Aeroacoustic Tests of Six Airfoils for Use on Small Wind Turbines; Period of Performance: August 23, 2002 through March 31, 2004, NREL/SR-500-35339, 15007773. 2004. Oerlemans S . Wind Tunnel Aeroacoustic Tests of Six Airfoils for Use on Small Wind Turbines; Period of Performance: August 23, 2002 through March 31, 2004 , NREL/SR-500-35339, 15007773 . 2004 . Search in Google Scholar

Langtry, R.B. and Menter, F.R. “Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes.” AIAA Journal Vol. 47 No. 12 (2009): pp. 2894–2906. Langtry R.B. Menter F.R. Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes . AIAA Journal Vol. 47 No. 12 ( 2009 ): pp. 2894 2906 . Search in Google Scholar

Dick, E. and Kubacki, S. “Transition Models for Turbomachinery Boundary Layer Flows: A Review.” International Journal of Turbomachinery, Propulsion and Power Vol. 2 No. 2 (2017): p. 4. Dick E. and Kubacki S . Transition Models for Turbomachinery Boundary Layer Flows: A Review . International Journal of Turbomachinery, Propulsion and Power Vol. 2 No. 2 ( 2017 ): p. 4 . Search in Google Scholar

Rezaeiha, A., Montazeri, H., and Blocken, B. “On the Accuracy of Turbulence Models for CFD Simulations of Vertical Axis Wind Turbines.” Energy Vol. 180 (2019): pp. 838–857. Rezaeiha A. Montazeri H. and Blocken B . On the Accuracy of Turbulence Models for CFD Simulations of Vertical Axis Wind Turbines . Energy Vol. 180 ( 2019 ): pp. 838 857 . Search in Google Scholar

Ansys Inc. “Ansys Fluent, Release 21.1, Theory Guide”, Canonsburg, Pennsylvania, USA, 2021. Ansys Inc . Ansys Fluent, Release 21.1, Theory Guide ”, Canonsburg, Pennsylvania, USA , 2021 . Search in Google Scholar

Curle, N. “The Influence of Solid Boundaries upon Aerodynamic Sound.” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences Vol. 231 No. 1187 (1955): pp. 505–514. Curle N . The Influence of Solid Boundaries upon Aerodynamic Sound . Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences Vol. 231 No. 1187 ( 1955 ): pp. 505 514 . Search in Google Scholar

Ffowcs-Williams, J.E.F. and Hawkings, D.L. “Sound Generation by Turbulence and Surfaces in Arbitrary Motion.” Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences Vol. 264 No. 1151 (1969): pp. 321–342. Ffowcs-Williams J.E.F. and Hawkings D.L. Sound Generation by Turbulence and Surfaces in Arbitrary Motion . Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences Vol. 264 No. 1151 ( 1969 ): pp. 321 342 . Search in Google Scholar

Lighthill, M. “On Sound Generated Aerodynamically I. General Theory.” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences Vol. 211 No. 1107 (1952): pp. 564–587. Lighthill M . On Sound Generated Aerodynamically I. General Theory . Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences Vol. 211 No. 1107 ( 1952 ): pp. 564 587 . Search in Google Scholar

Lighthill, M. “On Sound Generated Aerodynamically. II. Turbulence as a Source of Sound.” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences Vol. 222 No. 1148 (1954): pp. 1–32. Lighthill M . On Sound Generated Aerodynamically. II. Turbulence as a Source of Sound . Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences Vol. 222 No. 1148 ( 1954 ): pp. 1 32 . Search in Google Scholar

Free Field Technologies SA. “ACTRAN VI 2021.1 User’s Guide”, Belgium, 2020. Free Field Technologies SA . ACTRAN VI 2021.1 User’s Guide ”, Belgium , 2020 . Search in Google Scholar

eISSN:
2545-2835
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Geowissenschaften, Materialwissenschaft, Physik