Uneingeschränkter Zugang

The Contribution of A. K. Oppenheim to Explaining the Nature of the Initiation of Gaseous Detonation in Tubes


Zitieren

[1] Schelkin, K.I. “effect of tube roughness on the occurrence and propagation of detonation in gases”. Zh. Eksp. Teor. Fiz. Vol. 10 No. 7 (1940): pp. 823–827. Search in Google Scholar

[2] P. Wolański and S. Wójcicki: “On the mechanism of influence of obstacles on the flame propagation”, Sixth International Colloquia on the Gasdynamics of Explosions and Reactive Systems pp. 69–74. Stockholm, Sweden (1977), also published in Archivum Combustionis, Vol. 1 No. 1/2, (1981). Search in Google Scholar

[3] Woliński M. and Wolański P. “Gaseous Detonation Processes in Presence of Inert Particles.” Archivum Combustionis, Vol. 7 No. 3/4 (1987): pp. 353–370. Search in Google Scholar

[4] Goral P., Klemens R., and Wolański P. “Mechanism of Gas Flame Acceleration in the Presence of Neutral Particles.” Progress in Astronautics and Aeronautics Vol. 113 (1987): pp. 325–335.10.2514/5.9781600865879.0325.0335 Search in Google Scholar

[5] Wolański P., Liu J.C., Kauffman C.W., Nicholls J.A., and Sichel M. “The Effects of Inert Particles on Methane-Air Detonations.” Archivum Combustionis Vol. 8 No. 1 (1988): pp. 15–32. Search in Google Scholar

[6] Salamandra, G.D., Bazhenova, t.V., and Naboko I.M. “Formation of detonation wave during combustion of gas in combustion tube.” Symp. (Int.) Combust. 7: pp. 851–855. 1959.10.1016/S0082-0784(58)80128-9 Search in Google Scholar

[7] Babkin, V. and Kozachenko L. “the onset of detonation in a gas in tubes with rough walls.” Prikl. Mat. Tekh. Fiz. Vol. 3 (1960): pp. 165–174. Search in Google Scholar

[8] Soloukhin, R.I. “Udarnye volny i detonatsya v gazakh.” Gosudarstvennoe Izdatelstvo fizikomatematicheskoi literatury, Moscow, translation: “Shock waves and Detonation in Gases.” Mono Book Corp. Baltimore, USA (1963). Search in Google Scholar

[9] Krivosheyev, P., Penyazkov, O., and Sakalou, A. “Analysis of the final stage of flame acceleration and the onset of detonation in a cylindrical tube using high-speed stereoscopic imaging.” Combustion and Flame Vol. 216 (2020): pp. 146–160.10.1016/j.combustflame.2020.02.027 Search in Google Scholar

[10] Oppenheim, A.K., Urtiew, P.A. and Weinberg, F. J. “On the Use of Laser Sources in Schlieren-Interferometer Systems.” Proc. Roy. Soc. Vol. A291 (1966): pp. 279–290.10.1098/rspa.1966.0095 Search in Google Scholar

[11] Oppenheim, A.K. “Development and structure of plane detonation waves.” 4th AGARD Combustion and Propulsion Colloquium: pp. 186–258. Milan, Italy, April 1960, Pergamon Press, London (1961) Oppenheim, A.K. and Lederman, A.J. Role of Detonation in Combustion Instability. University of California, Berkeley (1964).10.1016/S0010-2180(60)80046-6 Search in Google Scholar

[12] Urtiew, P.A., and Oppenheim, A.K. “Experimental observations of the transition to detonation in an explosive gas.” Proc. Royal Soc. Lond. Vol. A295 (1966): pp. 13–28.10.1098/rspa.1966.0223 Search in Google Scholar

[13] Oppenheim, A.K. Introduction to Gasdynamics of Explosions. Vol. VI (1970): Springer-Verlag, Vienna-New york 2nd edn. 220 pp.10.1007/978-3-7091-4364-3 Search in Google Scholar

[14] Meyer, J. W., Urtiew, P. A., and Oppenheim, A. K. “On the Inadequacy of Gasdynamic Processes for Triggering the Transition to Detonation.” Combustion and Flame Vol. 14 No. 1 (February 1970).10.1016/S0010-2180(70)80005-0 Search in Google Scholar

[15] Wolański P. “Influence of non-isentropic processes on transition from deflagration to detonation in combustible mixtures.” Archivum Combustionis Vol. 11 No. 3-4 (1991): pp. 143–149. Search in Google Scholar

[16] Kuhl, A.L. private communication, Jadwisin (1986). Search in Google Scholar

[17] Frolov S.M., Noskov M.A., and Wolański P. “Auto-Ignition in Near-Wall Boundary Layer as a Cause of Deflagration to Detonation Transition.” Archivum Combustionis Vol. 14 No. 1-2 (1994): pp. 65–72. Search in Google Scholar

[18] Noskov M.A., Frolov S.M., and Wolański P. “The Effect of Non-Isentropic Processes on Deflagration to Detonation Transition in Gaseous Combustible Mixtures.” Proceedings of the ZEL’DOVICH MEMORIAL, International Conference on Combustion Vol. 2: pp. 370–376. Moscow, Russia, September 12-17, 1994. Search in Google Scholar

[19] Dziemińska, E., Fukuda, M., Hayashi, A.K., and Yamada, E. “Fast flame propagation in hydrogen-oxygen mixture.” Combustion Science and Technology Vol. 184 No. 10-11 (2012): pp. 1608-1615. DOI: 10.1080/00102202.2012.695252 Open DOISearch in Google Scholar

[20] Machida, T., Asahara, M., Hayashi, A.K., and Tsuboi, N. “Three-Dimensional Simulation of Deflagrationto-Detonation Transition with a Detailed Chemical Reaction Model.” Combustion Science and Technology Vol. 186 No. 10-11 (2014): pp. 1758–1773, DOI: 10.1080/00102202.2014.935647 Open DOISearch in Google Scholar

[21] Baranyshyn, Y. A., Krivosheyev, P. N., Penyazkov, O. G. and Sevrouk, K. L. “Flame front dynamics studies at deflagration-to-detonation transition in a cylindrical tube at low-energy initiation mode.” Shock Waves Vol. 30 (2020): pp. 305–313. DOI: 10.1007/s00193-020-00937-0 Open DOISearch in Google Scholar

[22] Krivosheyev, P., Novitski, A., and Penyazkov, O. “Dynamics of the flame structure during the deflagration to detonation transition in a tube.” Dynamics of Multiphase Media Vol. DMM-21 (2021). Novosibirsk, Russia Search in Google Scholar

eISSN:
2545-2835
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Geowissenschaften, Materialwissenschaft, Physik