Uneingeschränkter Zugang

Method of Designing a Distortion Gauze for Testing a Boundary Layer Ingesting Fan


Zitieren

As global trends aim to reduce emissions of pollutants, boundary layer ingesting (BLI) propulsions are attracting more and more attention. As such, N+2 generation aircraft with propulsion placed in the aft of the aircraft are gaining in popularity. The boundary layer is formed on the fuselage before entering the engine located in the aft of the aircraft. Due to significant difficulties in performing experimental tests of BLI propulsors with full-size aircraft, distortion gauzes are one of the methods to provide the desired air velocity profile at the inlet. This paper describes a novel method of designing such gauzes, a topic which is not well covered in the existing literature. In the first stage of the presented method, single orifices of different sizes were calculated using CFD tools. The relationship between their size and the gauze resistance coefficient was identified, making it possible to model the distortion gauze using porous media. An iterative approach was used to design a gauze that meets the requirements. This is, to our knowledge, the first distortion gauze design description where a porous media model has been used. Experimental tests demonstrated that the produced distortion gauze yields a velocity profile comparable to the desired one. This indicates the great potential of using the presented approach in further research on boundary layer ingesting propulsions. It offers an opportunity to reduce substantially both the costs of experimental research and the time required to design a distortion-tolerant fan.

eISSN:
2545-2835
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Geowissenschaften, Materialwissenschaft, Physik