Zitieren

[1] Ovchinnikova, N. G. & Medvedkov, D. A., 2019, “Primenenie bespilotnyh letatel’nyh apparatov dlja vedenija zemleustrojstva, kadastra i gradostroitel’stva” [The use of unmanned aerial vehicles for land management, cadastre and urban planning], Economy and Ecology of Territorial Formations, 3(1), 98-108. https://doi.org/10.23947/2413-1474-2019-3-1-98-108.10.23947/2413-1474-2019-3-1-98-108 Search in Google Scholar

[2] Fedorov L. P. & Mikhailov Yu.S., 2013, “Opredelenie optimal’nyh rezhimov krejserskogo poleta vysotnogo bespilotnogo letatel’nogo apparat” [Determination of the optimal modes of cruise flight of a high-altitude unmanned aerial vehicle], Scientific Bulletin of MSTU GA, 188, 72-76. Search in Google Scholar

[3] Turkin, I.K. & Trokhov, D.A. 2015, “Formirovanie oblika vysotnogo bespilotnogo letatel’nogo apparata vozdushnoj razvedki v zadachah poiska” [Formation of the appearance of a high-altitude unmanned aerial reconnaissance aircraft in search tasks], Scientific Bulletin of MSTU GA, 221, 106-114. Search in Google Scholar

[4] Lukyanov O.E., Ostrovoy A.V., Mendes Soto M.A., Klimov E.A., & Shakhov V.G., 2018, “Osobennosti aerodinamicheskih harakteristik bespilotnyh letatel’nyh apparatov s krylom bol’shogo udlinenia” [Features of the aerodynamic characteristics of unmanned aerial vehicles with a high aspect ratio wing], Scientific Bulletin of MSTU GA, 21(1), 30-39. https://doi.org/10.26467/2079-0619-2018-21-1-30-39.10.26467/2079-0619-2018-21-1-30-39 Search in Google Scholar

[5] Bezuevsky, A., 2019. Osobennosti harakteristik staticheskoj i dinamicheskoj aerouprugosti letatel’nyh apparatov s krylom bol’shogo udlinenia. [Features of the Characteristics of Static and Dynamic Aeroelasticity of Aircraft With High Aspect Ratio Wings]. Ph.D. thesis. http://www.tsagi.ru/upload/iblock/aa1/aa1e878d12d7492af8d5dce77a494993.pdf Search in Google Scholar

[6] Marqués, P. and Da Ronch, A., Advanced UAV Aerodynamics, Flight Stability and Control: Novel Concepts, Theory and Applications, 2017, First Edition, John Wiley & Sons Ltd.10.1002/9781118928691 Search in Google Scholar

[7] Djojodihardjo, H., 2011, “Review on development and recent patents on trailing vortices alleviation”, Recent Patents on Mechanical Engineering, 4, 41-48.10.2174/1874477X11104020083 Search in Google Scholar

[8] Abbas, A., Vicente, J., & Valero, E, 2013, Aerodynamic technologies to improve aircraft performance. Aerospace Science and Technology, 28, 100-132.10.1016/j.ast.2012.10.008 Search in Google Scholar

[9] Gratzer, L., 1991. Spiroid-Tipped Wing Pat. 5.102.068, cod. US005102068A Search in Google Scholar

[10] Nazarinia, M., Soltani, M. R., & Ghorb K., 2006, “Experimental study of vortex shapes behind a wing equipped with different winglets”, JAST, 1(3), 1-15. Search in Google Scholar

[11] Suhail Mostafa, Shyam Bose, Archana Nair, Mansoor Abdul Raheem, Thasneem Majeed, Atiqur Mohammed & Young Kim, 2014, “A parametric investigation of non-circular spiroid winglets”, EPJ Web of Conferences, 67(02077), 1-6. https://doi.org/10.1051/epjconf/20146702077.10.1051/epjconf/20146702077 Search in Google Scholar

[12] Manikandan, G., Rajashree, V. & Gràcia, S., 2017, “Design and performance analysis of spiroid winglet with normal wing”, Imperial Journal of Interdisciplinary Research, 3, 1-12. Search in Google Scholar

[13] Raj W. N. & Thomas, T., 2015, “Design and Analysis of Spiroid Winglet”, International Journal of Innovative Research in Science, Engineering and Technology, 4, 1139-1147. Search in Google Scholar

[14] Guerrero, J.E., Maestro, D., & Bottaro, A., 2014, “Biomimetic spiroid winglets for lift and drag control”, Comptes Rendus Mecanique. 340, 67-80. 10.1016/j.crme.2011.11.007.10.1016/j.crme.2011.11.007 Search in Google Scholar

[15] Samuel, M. & Parvathy, R., 2019, “A review of winglets on tip vortex, drag and airfoil geometry”, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 63, 218-237. Search in Google Scholar

[16] Hantrais-Gervois, J.-L., Grenon, R., Mann, A., & Buscher, A., 2009, “Downward pointing winglet design and assessment within the M-DAW research project”, The Aeronautical Journal, 113(1142), 221-232.10.1017/S000192400000289X Search in Google Scholar

[17] Hammer, P. Altman, A. & Eastep, F., 2014, “Validation of a discrete vortex method for low Reynolds number unsteady flows”, AIAA Journal, 3(52), 643-649.10.2514/1.J052510 Search in Google Scholar

[18] Katz, J., and Plotkin, A., 2001, Low Speed Aerodynamics, 2nd ed., Cambridge Univ. Press, Cambridge, England, U.K.10.1017/CBO9780511810329 Search in Google Scholar

[19] Gudmundsson, Sh., 2014, General Aviation Aircraft Design, Chapter 15 - Aircraft Drag Analysis, Butterworth-Heinemann, pp. 661-760. https://doi.org/10.1016/B978-0-12-397308-5.00015-5.10.1016/B978-0-12-397308-5.00015-5 Search in Google Scholar

[20] Cameron, T., Yarin, A. & Foss J., 2007, Springer Handbook of Experimental Fluid Mechanics, Verlag Berlin Heidelberg. Search in Google Scholar

[21] Kuzenkov, V. K., Mikhailova, N. P. & Repik E. U., 1984, “Ob eksperimental’nom opredelenii profil’nogo soprotivlenia metodom impul’sov” [On the experimental determination of the profile resistance by the pulse method], TsAGI Scientific Notes, 1(15), 110-114. Search in Google Scholar

[22] Ukrainets, Ye.O., Hlushchenko, P.A. & Spіrkіn V. 2918, “Viznachenna znachen’ kriteriïv doskonalosti aerodinamichnoï trubi pri tehnichnij pidgotovci aerodinamichnogo eksperimentu” [Determination of values of criteria of perfection of a wind tunnel at technical preparation of aerodynamic experiment], Weapons systems and Military Equipment, 3(55), 100-107. https://doi.org/10.30748/soivt.2018.55.14.10.30748/soivt.2018.55.14 Search in Google Scholar

[23] Hizhnyak, A.S., Glushenko, P.A. & Spirkin, Ye.V., 2016, “Metodika aerodinamichnih viprobuvan’ modelej vinišuvachiv z imitaciєû dviguniv” [Methods of aerodynamic tests of fighter models with engine simulation], Science and Technology of the Air Force of the Armed Forces of Ukraine, 2, 47-51. Search in Google Scholar

[24] Popov, V., Loginov, V., Ukrainets, Ye., Shmyrov, V., Steshenko P. & Hlushchenko, P., 2020, “Improving aircraft fuel efficiency by using the adaptive wing and winglets”, Eastern-European Journal of Enterprise Technologies, 2, 1(104), 51-59. http://doi.org/10.15587/1729-4061.2020.20066410.15587/1729-4061.2020.200664 Search in Google Scholar

eISSN:
2545-2835
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Geowissenschaften, Materialwissenschaft, Physik