Uneingeschränkter Zugang

Design and Analysis Methods for Composite Bonded Joints


Zitieren

[1] Baker, A. A., and Scott, M. L., eds., 2016, Composite Materials for Aircraft Structures, AIAA/American Institute of Aeronautics and Astronautics, Inc, Reston, Virginia. Search in Google Scholar

[2] Heslehurst, R. B., 2013, Design and Analysis of Structural Joints with Composite Materials, DEStech Publ, Lancaster, Pa. Search in Google Scholar

[3] Kim, H., and Kedward, K., 2001, Stress Analysis Of In-Plane, Shear-Loaded, Adhesively Bonded Composite Joints And Assemblies, DOT/FAA/AR-01/7, FAA. Search in Google Scholar

[4] Baron, A., 2012, The I-23 “Manager” passenger plane. Selected research problems (in Polish). Scientific Publication of the Institute of Aviation, Warsaw. Search in Google Scholar

[5] Speth, D. R., yang, y. P., and Ritter, G. W., 2010, “Qualification of Adhesives for Marine Composite-to-Steel Applications,” Int. J. Adhes. Adhes., 30(2), pp. 55-62. 10.1016/j.ijadhadh.2009.08.004.10.1016/j.ijadhadh.2009.08.004 Search in Google Scholar

[6] Wahab, M. A., 2014, The Mechanics of Adhesives in Composite and Metal Joints: Finite Element Analysis with ANSYS, DEStech Publications, Lancaster, PA. Search in Google Scholar

[7] Pegoretti, A., ed., 2019, Adhesive Joining of Structural Components: New Insights and Technologies, SAE International, Warrendale, Pennsylvania, USA.10.4271/pt-191 Search in Google Scholar

[8] Banea, M. D., and da Silva, L. F. M., 2009, “Adhesively Bonded Joints in Composite Materials: An Overview,” Proc. Inst. Mech. Eng. Part J. Mater. Des. Appl., 223(1), pp. 1-18. 10.1243/14644207JMDA219.10.1243/14644207JMDA219 Search in Google Scholar

[9] Da Silva, L. F. M., 2018, Handbook of Adhesion Technology, Springer Science+Business Media, LLC, New york, Ny. Search in Google Scholar

[10] Gleich, D. M., 2002, Stress Analysis of Structural Bonded Joints, DUP Science, Delft. Search in Google Scholar

[11] Zhu, y., and Kedward, K., 2005, Methods of Analysis and Failure Predictions for Adhesively Bonded Joints of Uniform and Variable Bondline Thickness, DOT/FAA/AR 05-12, FAA. Search in Google Scholar

[12] da Silva, L. F. M., das Neves, P. J. C., Adams, R. D., and Spelt, J. K., 2009, “Analytical Models of Adhesively Bonded Joints—Part I: Literature Survey,” Int. J. Adhes. Adhes., 29(3), pp. 319-330. 10.1016/j.ijadhadh.2008.06.005.10.1016/j.ijadhadh.2008.06.005 Search in Google Scholar

[13] He, X., 2011, “A Review of Finite Element Analysis of Adhesively Bonded Joints,” Int. J. Adhes. Adhes.10.1016/j.ijadhadh.2011.01.006 Search in Google Scholar

[14] 2011, A Space Engineering Adhesive Boding Handbook, ECSS-E-HB-32-21, ESA Requirements and Standards Division, Netherlands. Search in Google Scholar

[15] Esp, B., 2017, Practical Analysis of Aircraft Composites, Grand Oak Publishing. Search in Google Scholar

[16] Flinn, B., and Phariss, M., 2006, The Effect of Peel-Ply Surface Preparation Variables on Bond Quality, DOT/FAA/AR-06/28, FAA. Search in Google Scholar

[17] Potter, D. L., 1979, Primary Adhesively Bonded Structure Technology (PABST): Design Handbook for Adhesive Bonding, AFFDL-TR-79-3129, Air Force Flight Development Laboratory, Long Beach. Search in Google Scholar

[18] Hart-Smith, L. J., 1973, Adhesive Bonded Single Lap Joints, NASA-CR-112236, NASA, USA. Search in Google Scholar

[19] Hart-Smith, L. J., 1973, Adhesive Bonded Double-Lap Joints, NASA-CR-112235, NASA, USA. Search in Google Scholar

[20] Tomblin, J., Strole, K., Dodosh, G., and Ilcewicz, L., 2005, Assessment of Industry Practices for Aircraft Bonded Joints and Structures, DOT/FAA/AR-05/13, FAA. Search in Google Scholar

[21] Tomblin, J., Seneviratne, W., Escobar, P., and Yoon-Khian, y., 2002, Shear Stress-Strain Data for Structural Adhesives, DOT/FAA/AR-02/97, FAA. Search in Google Scholar

[22] 2012, “CMH-17-1G (Volume 1 of 6) Composite Materials Handbook: Polymer Matrix Composites Guidelines for Characterization of Structural Materials.” Search in Google Scholar

[23] Tong, L., and Luo, Q., 2018, “Analytical Approach,” Handbook of Adhesion Technology, L.F.M. da Silva, A. Öchsner, and R.D. Adams, eds., Springer International Publishing, Cham, pp. 665-700.10.1007/978-3-319-55411-2_24 Search in Google Scholar

[24] Volkersen, O., 1938, “Die Nietkraftverteilung in Zugbeanspruchten Nietverbindungen Mit Konstanten Laschenquerschnitten,” Luftfahrtforschung, 15, pp. 41-47. Search in Google Scholar

[25] Tsai, M. y., Oplinger, D. W., and Morton, J., 1998, “Improved Theoretical Solutions for Adhesive Lap Joints,” Int. J. Solids Struct., 35(12), pp. 1163-1185.10.1016/S0020-7683(97)00097-8 Search in Google Scholar

[26] Saleh, M. N., Saeedifar, M., Zarouchas, D., and De Freitas, S. T., 2020, “Stress Analysis of Double-Lap Bi-Material Joints Bonded with Thick Adhesive,” Int. J. Adhes. Adhes, 97, p. 102480. 10.1016/j.ijadhadh.2019.102480.10.1016/j.ijadhadh.2019.102480 Search in Google Scholar

[27] Goland, M., and Reissner, E., 1944, “Stresses in Cemented Joints,” J. Appl. Mech., 11, pp. 4-47.10.1115/1.4009336 Search in Google Scholar

[28] Wang, J., 2013, “Mechanics and Fracture of Hybrid Material Interface Bond,” PhD, The University of Akron. Search in Google Scholar

[29] Zhao, B., Lu, Z.-H., and Lu, y.-N., 2011, “Closed-Form Solutions for Elastic Stress–Strain Analysis in Unbalanced Adhesive Single-Lap Joints Considering Adherend Deformations and Bond Thickness,” Int. J. Adhes. Adhes., 31(6), pp. 434-445. 10.1016/j.ijadhadh.2011.03.002.10.1016/j.ijadhadh.2011.03.002 Search in Google Scholar

[30] da Silva, L. F. M., das Neves, P. J. C., Adams, R. D., Wang, A., and Spelt, J. K., 2009, “Analytical Models of Adhesively Bonded Joints—Part II: Comparative Study,” Int. J. Adhes. Adhes., 29(3), pp. 331-341. 10.1016/j.ijadhadh.2008.06.007.10.1016/j.ijadhadh.2008.06.007 Search in Google Scholar

[31] Areiza-Hurtado, M., Vega-Posada, C. A., and Aristizabal-Ochoa, J. D., 2019, “A Novel Linear Matrix Method to Analyze Adhesive Joints,” Compos. Struct., 226, p. 111193. 10.1016/j.compstruct.2019.111193.10.1016/j.compstruct.2019.111193 Search in Google Scholar

[32] Wang, S., Xie, Z., and Li, X., 2019, “A Modified Analytical Model for Stress Analysis of Adhesively Bonded Stepped-Lap Joints under Tensile Load,” Eur. J. Mech. A/Solids, 77, p. 103794. 10.1016/j.euromechsol.2019.103794.10.1016/j.euromechsol.2019.103794 Search in Google Scholar

[33] Society of Automotive Engineers, and National Institute for Aviation Research (U.S.), eds., 2012, Composite Materials Handbook Volume 3, SAE International on behalf of CMH-17, a division of Wichita State University, Warrendale, Pa. Search in Google Scholar

[34] García, J. A., Chiminelli, A., García, B., Lizaranzu, M., and Jiménez, M. A., 2011, “Characterization and Material Model Definition of Toughened Adhesives for Finite Element Analysis,” Int. J. Adhes. Adhes., 31(4), pp. 182-192. 10.1016/j.ijadhadh.2010.12.006.10.1016/j.ijadhadh.2010.12.006 Search in Google Scholar

[35] Wang, C. H., and Chalkley, P., 2000, “Plastic yielding of a Film Adhesive under Multiaxial Stresses,” Int. J. Adhes. Adhes., 20(2), pp. 155-164. 10.1016/S0143-7496(99)00033-0.10.1016/S0143-7496(99)00033-0 Search in Google Scholar

[36] Rodríguez, R. Quispe, Paiva, W. P. de, Sollero, P., Rodrigues, M. R. Bertoni, and Albuquerque, É. L. de, 2012, “Failure Criteria for Adhesively Bonded Joints,” Int. J. Adhes. Adhes., 37, pp. 26-36. 10.1016/j.ijadhadh.2012.01.009.10.1016/j.ijadhadh.2012.01.009 Search in Google Scholar

[37] Campilho, R. D. S. G., ed., 2017, Strength Prediction of Adhesively-Bonded Joints, CRC Press, Taylor & Francis Group, CRC Press is an imprint of the Taylor & Francis Group, an informa business, Boca Raton. Search in Google Scholar

[38] Whitney, J. M., and Nuismer, R. J., 1974, “Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations,” J. Compos. Mater., 8(3), pp. 253-265. 10.1177/002199837400800303.10.1177/002199837400800303 Search in Google Scholar

[39] Sajikumar, K. S., Kumar, N. A., and Rao, B. N., 2014, “Application of the Point Stress Criterion to Assess the Bond Strength of a Single-Lap Joint,” Strength Mater., 46(4), pp. 518-525. 10.1007/s11223-014-9577-z.10.1007/s11223-014-9577-z Search in Google Scholar

[40] Akhavan-Safar, A., Silva, L. F. M. da, and Ayatollahi, M. R., 2017, “An Investigation on the Strength of Single Lap Adhesive Joints with a Wide Range of Materials and Dimensions Using a Critical Distance Approach,” Int. J. Adhes. Adhes., 78, pp. 248-255. 10.1016/j.ijadhadh.2017.08.009.10.1016/j.ijadhadh.2017.08.009 Search in Google Scholar

[41] Cruz-G, C. E., Akhavan-Safar, A., da Silva, L. F. M., and Ayatollahi, M. R., 2020, “On the Evaluation of a Critical Distance Approach for Failure Load Prediction of Adhesively Bonded Dissimilar Materials,” Continuum Mech. Thermodyn. 32, 1647–1657. 10.1007/s00161-020-00871-7.10.1007/s00161-020-00871-7 Search in Google Scholar

[42] Barenblatt, G. I., 1962, “The Mathematical Theory of Equilibrium Cracks in Brittle Fracture,” Advances in Applied Mechanics, H.L. Dryden, T. von Kármán, G. Kuerti, F.H. van den Dungen, and L. Howarth, eds., Elsevier, pp. 55-129.10.1016/S0065-2156(08)70121-2 Search in Google Scholar

[43] Dugdale, D. S., 1960, “Yielding of Steel Sheets Containing Slits,” J. Mech. Phys. Solids, 8(2), pp. 100-104. 10.1016/0022-5096(60)90013-2.10.1016/0022-5096(60)90013-2 Search in Google Scholar

[44] Camanho, P. P., and Davila, C. G., 2002, Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials, NASA/TM-2002-211737, NASA Langley Research Center; Hampton, VA, United States. Search in Google Scholar

[45] “Abaqus Analysis User’s Manual – Dokumentacja Programu Abaqus 6.12.” Search in Google Scholar

[46] 2016, “MSC Nastran 2016, Nonlinear User’s Guide, SOL400.” Search in Google Scholar

[47] da Silva, L. F. M., and Campilho, R. D. S. G., 2012, “Advances in Numerical Modelling of Adhesive Joints,” Advances in Numerical Modeling of Adhesive Joints, L.F.M. da Silva, and R.D.S.G. Campilho, eds., Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1-93.10.1007/978-3-642-23608-2_1 Search in Google Scholar

[48] Carvalho, U. T. F., and Campilho, R. D. S. G., 2017, “Validation of Pure Tensile and Shear Cohesive Laws Obtained by the Direct Method with Single-Lap Joints,” Int. J. Adhes. Adhes., 77, pp. 41-50. 10.1016/j.ijadhadh.2017.04.002.10.1016/j.ijadhadh.2017.04.002 Search in Google Scholar

[49] Sun, L., Tie, y., Hou, y., Lu, X., and Li, C., 2020, “Prediction of Failure Behavior of Adhesively Bonded CFRP Scarf Joints Using a Cohesive Zone Model,” Eng. Fract. Mech., 228, p. 106897. 10.1016/j.engfracmech.2020.106897.10.1016/j.engfracmech.2020.106897 Search in Google Scholar

[50] Zhang, J., Wang, J., yuan, Z., and Jia, H., 2018, “Effect of the Cohesive Law Shape on the Modelling of Adhesive Joints Bonded with Brittle and Ductile Adhesives,” Int. J. Adhes. Adhes., 85, pp. 37-43. 10.1016/j.ijadhadh.2018.05.017.10.1016/j.ijadhadh.2018.05.017 Search in Google Scholar

[51] Silva, D. F. O., Campilho, R. D. S. G., Silva, F. J. G., and Carvalho, U. T. F., 2018, “Application a Direct/Cohesive Zone Method for the Evaluation of Scarf Adhesive Joints,” Appl. Adhes. Sci., 6(1), p. 13. 10.1186/s40563-018-0115-2.10.1186/s40563-018-0115-2 Search in Google Scholar

[52] 2009, “ISO 25217:2009, Adhesives — Determination of the Mode 1 Adhesive Fracture Energy of Structural Adhesive Joints Using Double Cantilever Beam and Tapered Double Cantilever Beam Specimens.” Search in Google Scholar

[53] D30 Committee, ASTM D5041-98(2019), Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, ASTM International. Search in Google Scholar

[54] D30 Committee, ASTM D6671 / D6671M-19, Test Method for Mixed Mode I-Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites, ASTM International. Search in Google Scholar

[55] Sørensen, B. F., and Jacobsen, T. K., 2003, “Determination of Cohesive Laws by the J Integral Approach,” Cohesive Models, 70(14), pp. 1841-1858. 10.1016/S0013-7944(03)00127-9.10.1016/S0013-7944(03)00127-9 Search in Google Scholar

[56] Davis, M., and Tomblin, J., 2007, “DOT/FAA/AR-TN06/57, Best Practice in Adhesive-Bonded Structures and Repairs.” Search in Google Scholar

eISSN:
2545-2835
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Geowissenschaften, Materialwissenschaft, Physik