Uneingeschränkter Zugang

Numerical Study of Detonation Processes in Rotating Detonation Engine and its Propulsive Performance


Zitieren

[1] Press, O., 2007, “Asia Pacific’s aviation industry remains buoyant as 85 million seats go on sale,” www.oag.com. Search in Google Scholar

[2] Sehra, A. K. and Whitlow, W., 2004, “Propulsion and power for 21st century aviation,” Progress in Aerospace Sciences, vol. 40, pp. 199-235.10.1016/j.paerosci.2004.06.003 Search in Google Scholar

[3] Bussing, T. and Pappas, G., 1994, “An introduction to pulse detonation engines,” AIAA 1994-0263, https://doi.org/10.2514/6.1994-263.10.2514/6.1994-263 Search in Google Scholar

[4] Roy, G. D., Frolov, S. m., Borisov, A. A., and Netzer, D. W., 2004, “Pulse detonation propulsion: challenges, current status and future perspective,” Progress in Energy and Combustion Science, vol. 30, pp. 545-672.10.1016/j.pecs.2004.05.001 Search in Google Scholar

[5] Wolanski, P., Kindracki, J., and Fujiwara, T., 2006, “An experimental study of small rotating detonation engines,” Pulsed and Continuous Detonation Ed., edited by Roy, G. D., Frolov, S. m., and Siniball, J., Torus Press, pp. 332-338. Search in Google Scholar

[6] Wolanski, P., 2010, “Development of the continuous rotating detonation engines,” Progress in Pulsed and Continuous Detonations, edited by Roy, G. D. and Frolov, S. m., moscow, Torus Press, pp. 395-406. Search in Google Scholar

[7] Bykovskii, F. A., Zhdan, S. A., and Vedernikov, E. F., 2006, “Continuous spin detonations,” Journal of Propulsion and Power, vol. 22(6), pp. 1204-1216.10.2514/1.17656 Search in Google Scholar

[8] lu, F. K. and Braun, E. m., 2014, “Rotating detonation wave propulsion: Experimental challenges, modeling, and engine concepts,” Journal of Propulsion and Power, vol. 30, pp. 1125-1142, https://doi.org/10.2514/1.B34802.10.2514/1.B34802 Search in Google Scholar

[9] Voitsekhovskii, B. V., 1960, “Stationary spin detonation,” Soviet Journal of Applied mechanics and Technical Physics, vol. 3, pp. 157-164. Search in Google Scholar

[10] Nicholls, J. A., Cullen, R. E., and Raglano, K. W., 1966, “Feasibility studies of a rotating detonation wave rocket motor,” Journal of Spacecraft, vol. 3, no. 6, pp. 893-898.10.2514/3.28557 Search in Google Scholar

[11] Bykovskii, F. A., Zhdan, S. A., and Vedernikov, E. F., 2008, “Continuous spin detonation of hydrogen-oxygen mixtures. 1. Annular cylindrical combustors,” Combustion, Explosion, and Shock Waves, vol. 44, pp. 150-162.10.1007/s10573-008-0021-1 Search in Google Scholar

[12] Daniau, E., Falempin, F., and Zhdan, S., 2005, “Pulsed and rotating detonation propulsion systems: first step towards operational engines,” AIAA 2005-3233, https://doi.org/10.2514/6.2005-3233.10.2514/6.2005-3233 Search in Google Scholar

[13] Falempin, F. and Daniau, E., 2008, “A contribution to the development of actual continuous detonation wave engine,” AIAA 2008-2679, https://doi.org/10.2514/6.2008-2679.10.2514/6.2008-2679 Search in Google Scholar

[14] Zhdan, S. A., Bykovskii, F. A., and Vedernikov, E. F., 2007, “mathematical modeling of a rotating detonation wave in a hydrogen-oxygen mixture,” Combustion, Explosion, and Shock Waves, Vol. 43, No. 4, pp. 449-459.10.1007/s10573-007-0061-y Search in Google Scholar

[15] Yi, T.-H., lou, J., Turangan, C. and Choi, J.-Y., and Wolanski, P., 2011, “Propulsive performance of a continuously rotating detonation engine,” Journal of Propulsion and Power, vol. 27, pp. 171-181, https://doi.org/10.2514/1.46686.10.2514/1.46686 Search in Google Scholar

[16] Smith, G. P., Golden, D. m., Frenklach, m., moriarty, N. W., Eiteneer, B. et al., GRI-mech 3.0, http://combustion.berkeley.edu/gri-mech/ Search in Google Scholar

[17] Yi, T.-H., lu, F. K., Wilson, D. R, Emanuel, G., 2017, “Numerical study of detonation wave propagation in a confined supersonic flow,” Shock Waves, vol. 27, pp. 395-408, https://doi.org/10.1007/s00193-016-0666-8.10.1007/s00193-016-0666-8 Search in Google Scholar

[18] Yi, T.-H., Anderson, D. A., Wilson, D. R., lu, F. K., 2005, “Numerical study of two-dimensional viscous, chemically reacting flow,” AIAA 2005-4868, https://doi.org/10.2514/6.2005-4868.10.2514/6.2005-4868 Search in Google Scholar

[19] macNeice, P., Olson, K. m., mobarry, C., deFainchtein, R., and Packer, C., 2000, “PARAmESH: A parallel adaptive mesh refinement community toolkit,” Computer Physics Communications, vol. 126(3), pp. 330-354, https://doi.org/10.1016/S0010-4655(99)00501-9.10.1016/S0010-4655(99)00501-9 Search in Google Scholar

[20] leveque, R. J., 2002, Finite Volume methods for Hyperbolic Problems, Cambridge University Press.10.1017/CBO9780511791253 Search in Google Scholar

[21] Roe, P. l., 1981, “Approximate Riemann solvers, parameter vectors and difference schemes,” Journal of Computational Physics, vol. 43, pp. 357-372.10.1016/0021-9991(81)90128-5 Search in Google Scholar

[22] van leer, B., 1979, “Towards the ultimate conservative difference scheme, V: A second-order sequel to Godunov’s method,” Journal of Computational Physics, vol. 32, pp. 101-136.10.1016/0021-9991(79)90145-1 Search in Google Scholar

[23] Tannehill, J. C., Anderson, D. A., and Pletcher, R. H., 1997, Computational Fluid mechanics and Heat Transfer. Taylor and Francis, Washington, D. C. Search in Google Scholar

[24] Williams, D. N., 2002, Numerical modelling of multidimensional Detonation Structure, Ph.D. thesis, University of Calgary, Calgary, Alberta. Search in Google Scholar

[25] Brown, P. N., Byrne, G. D., and Hindmarsh, A.C., 1989, “VODE: A variable-coefficient ode solver, SIAm Journal on Scientific and Statistical Computing, vol. 10, pp. 1038-1051.10.1137/0910062 Search in Google Scholar

[26] Berger, m. and Oliger, J., 1984, “Adaptive mesh refinement for hyperbolic partial differential equations,” Journal of Computational Physics, vol. 53, pp. 484-512.10.1016/0021-9991(84)90073-1 Search in Google Scholar

[27] lee, J. H. S., 2008, The Detonation Phenomenon, Cambridge Univ. Press, New York.10.1017/CBO9780511754708 Search in Google Scholar

[28] Gordon, S. and mcBride, B. J., 1976, “Computer program for calculation of complex chemical equilibrium compositions and application I. Analysis,” Tech. Rep. NASA RP-1311. Search in Google Scholar

[29] ma, F., Choi, J. Y., and Yang, V., 2005, “Thrust chamber dynamics and propulsive performance of single-tube pulse detonation engines,” Journal of Propulsion and Power, Vol. 21, No. 3, pp. 512-526, https://doi.org/10.2514/1.7393.10.2514/1.7393 Search in Google Scholar

[30] Yi, T.-H., Turangan, C., lou, J., Wolanski, P., Kindracki, J., 2009, “A three-dimensional numerical study of rotational detonation in an annular chamber,” AIAA paper 2009-0634, https://doi.org/10.2514/6.2009-634.10.2514/6.2009-634 Search in Google Scholar

eISSN:
2545-2835
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Geowissenschaften, Materialwissenschaft, Physik