Uneingeschränkter Zugang

Fatigue Life Prediction for Reinforced-Concrete Low Domes


Zitieren

Mohammed, M. R., (2018). Behavior of RPC hemispherical dome concentrically loaded. The 1st National Conference on Civil and Architectural Engineering 26-28. Search in Google Scholar

Chenxu, Z., Jinquan, Z. & Ruinian, J. (2020). Fatigue flexural performance of short-span reinforced concrete t-beams considering overloading effect. The Baltic journal of road and bridge engineering, 15(2): 89–110. DOI: 10.7250/bjrbe.2020-15.474. Search in Google Scholar

Dineshkumar, R. & Ramkumar, S. (2019). Review paper on fatigue behavior of reinforced concrete beams. Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2019.05.353. Search in Google Scholar

Catalin, G., Pierre, L. & Jean, P. (2007). Response of CFRP-strengthened beams under fatigue with different load amplitudes. Construction and Building Materials, 21(4), pp. 756-763. Search in Google Scholar

Suryanto, B. & Staniforth, G. (2019). Monitoring the Shear Fatigue Response of Reinforced Concrete Beams Subjected to Moving Loads using Digital Image Correlation. Civil Engineering Dimension, 21(1), March 2019, 6 – 12. DOI: 10.9744/CED.21.1.6-12. Search in Google Scholar

Purnomo, J. Octaviani, V. Chiaulina, P. K. & Chandra, J. (2020). Evaluation of a Macro Lump Plasticity Model for Reinforced Concrete Beam-Column Joint under Cyclic Loading. Civil Engineering Dimension, 22(2), September 2020, 82 – 93. DOI: 10.9744/CED.22.2.82-. Search in Google Scholar

Benard, I. (2017). Fatigue damage analysis of reinforced concrete structural elements. Doctoral Thesis, University of Toronto. Search in Google Scholar

Ehab, H. Mark, A. Bradford, R. & Ian, G. (2010). Nonlinear long-term behaviour of spherical shallow thin-walled concrete shells of revolution, International Journal of Solids and Structures, 47, 204–215. https://doi.org/10.1016/j.ijsolstr.2009.09.027. Search in Google Scholar

Matake, T. (1980). An explanation on fatigue limit under combined stress. Bulletin of the Japan Society of Mechanical Engineers. Search in Google Scholar

Findley, MN. (1959). A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending. Journal of Engineering for Industry. Search in Google Scholar

Dang Van, K. (1993). Macro-Micro Approach in high-cycle Multiaxial Fatigue. Advances in Multiaxial Fatigue. ASTM STP I191. D. L. McDowell and R. Ellis, EDS., American Society for Testing and Materials, Philadelphia. Search in Google Scholar

Bianzeube, T., Nadjitonon, N., Djonglibet, W-D. & Jean-Louis, R. (2018). Multiaxial fatigue criteria based on an integral approach: justification of the superiority of this approach over the critical plane approach. International Journal of Current Research, 10 (1), pp. 63910-63917. Search in Google Scholar

Nadjitonon, N. (2010). Contribution to the modeling of fatigue damage. Doctoral Thesis, UNIVERSITY OF BLAISE PASCAL – CLERMONT II. Search in Google Scholar

Logzit, N. & Kebiche, K. (2021). Biaxial fatigue analysis model under non-proportional phase loading of tensegrity cable domes. Engineering Structures, 245. 112791, ISSN 0141-296, https://doi.org/10.1016/j.engstruct.2021.112791. Search in Google Scholar

Logzit, N. & Kebiche, K. (2020). Numerical Model for High Relative Capacity of Tensegrity Cable Domes. Civil Engineering Dimension, 22(1). DOI: 10.9744/CED.22.1.29-36. Search in Google Scholar

DTRF, (2021). Cahier des clauses techniques générales applicables aux marchés publics de travaux de génie civil, Fascicule 74 : Construction des réservoirs en béton et réhabilitation des réservoirs en béton ou en maçonnerie. Version 4.01. Search in Google Scholar

eISSN:
1338-7278
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere