Uneingeschränkter Zugang

Theoretical Analysis on Reinforced Concrete Bridge from Non-linear Temperature Effect


Zitieren

[1] Kvočák, V. & Dubecký, D. (2013). Experimental stiffness verification of composite beams (ASEM 13). In Advances in Structural Engineering and Mechanics. World Congress on Advances: International Convention Center Jeju, Jeju. Techno-Press. p. 3171-3178. ISBN 978-89-89693-37-6. Search in Google Scholar

[2] Kvočák, V., Dubecký, D., Kocúrová, R., Beke, P. & Al Ali, M. (2014). Evaluation and analysis of bridges with encased filler beams. In Civil Engineering and Urban Planning 3: Proceedings of the 3rd International Conference on Civil Engineering and Urban Planning: CEUP 2014: Wuhan, China. London: Taylor and Francis Group, p. 150-153. ISBN 978-1-138-00125-1. Search in Google Scholar

[3] Yun, L., Jiantao, W. & Jun, C. (2014). Mechanical properties of a waterproofing adhesive layer used on concrete bridges under heavy traffic and temperature loading. International Journal of Adhesion and Adhesives. 48, 102-109. Search in Google Scholar

[4] Kyong-Ku, Y. & Pangil, C. (2014). Causes and controls of cracking at bridge deck overlay with very-early strength latex-modified concrete. Construction and Building Materials. 56, 53-62. Search in Google Scholar

[5] Si, X. T., Francis Au, T. K. & Li, Z. H. (2013). Capturing the long-term dynamic properties of concrete cable-stayed bridges. Engineering Structures. 57, 502-511. Search in Google Scholar

[6] Pagani, R., Bocciarelli, M., Carvelli, V. & Pisani, M. A. (2014). Modelling high temperature effects on bridge slabs reinforced with GFRP rebars. Engineering Structures. 81, 318-326. Search in Google Scholar

[7] Giussani, F. (2009). The effects of temperature variations on the long-term behaviour of composite steel-concrete beams. Engineering Structures. 31 (10), 2392-2406. Search in Google Scholar

[8] Kovaľaková, M., Fričová, O., Hronský, V., Olčák, D., Mandula, J. & Salaiová, B. (2013). Characterisation of crumb rubber modifier using solid-state nuclear magnetic resonance spectroscopy. Road Materials and Pavement Design. 14 (4), 946-958. https://doi.org/10.1080/14680629.2013.837835 Search in Google Scholar

[9] Mandula, J., Salaiová, B. & Kovaľaková, M. (2002). Prediction of noise from trams. Applied acoustics. 63 (4), 373-389. https://doi.org/10.1016/S0003-682X(01)00047-0 Search in Google Scholar

[10] Wang, Z. C., Zha, G. P., Ren, W. X., Hu, K. & Yang, H. (2018). Nonlinear boundary parameter identification of bridges based on temperature-induced strains. Structural Engineering and Mechanics. 68 (5), 563-573. https://doi.org/10.12989/sem.2018.68.5.563. Search in Google Scholar

[11] Abdel-Fattah, M. T. & Abdel-Fattah, T. T. (2019). Behavior of Integral Frame Abutment Bridges Due to Cyclic Thermal Loading: Nonlinear Finite-Element Analysis. Journal of Bridge Engineering. 24 (5). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001394 Search in Google Scholar

[12] Wedel, F. & Marx, S. (2022). Application of machine learning methods on real bridge monitoring data. Engineering Structures. 250, 113365. https://doi.org/10.1016/j.engstruct.2021.113365. Search in Google Scholar

[13] EN 1991-1-5 (2007). Eurocode 1: Actions on structures - Part 1-5: General actions - Thermal actions. Search in Google Scholar

[14] EN 1991-2-5 (2000). Eurocode 1: Actions on structures - Part 2: Traffic loads on bridges. Search in Google Scholar

[15] CSN 73 6203 (1986). Loads on bridges. Search in Google Scholar

eISSN:
1338-7278
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere