1. bookVolumen 16 (2021): Heft 2 (December 2021)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1338-7278
Erstveröffentlichung
29 Mar 2013
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Predicting energy demand of residential buildings: A linear regression-based approach for a small sample size

Online veröffentlicht: 30 Dec 2021
Volumen & Heft: Volumen 16 (2021) - Heft 2 (December 2021)
Seitenbereich: 67 - 85
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1338-7278
Erstveröffentlichung
29 Mar 2013
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch

[1] APRUE. (2019), L'Agence Nationale pour la Promotion et la Rationalisation de l'Utilisation de l'Energie (2005), La situation énergétique nationale, chiffre 2017, édition 2019. Search in Google Scholar

[2] AMIRI, Shideh Shams, MOTTAHEDI, Mohammad, et ASADI, Somayeh. Using multiple regression analysis to develop energy consumption indicators for commercial buildings in the US. Energy and Buildings, 2015, vol. 109, p. 209-216.10.1016/j.enbuild.2015.09.073 Search in Google Scholar

[3] BOUYER, Julien. Modélisation et simulation des microclimats urbains-Etude de l'impact de l'aménagement urbain sur les consommations énergétiques des bâtiments. 2009. PHD dissertation. Université de Nantes, France. Search in Google Scholar

[4] SEMAHI, Samir, ZEMMOURI, Noureddine, SINGH, Manoj Kumar, et al. Comparative bioclimatic approach for comfort and passive heating and cooling strategies in Algeria. Building and Environment, 2019, vol. 161, p. 106271.10.1016/j.buildenv.2019.106271 Search in Google Scholar

[5] CARLO, Joyce et LAMBERTS, Roberto. Development of envelope efficiency labels for commercial buildings: Effect of different variables on electricity consumption. Energy and Buildings, 2008, vol. 40, no 11, p. 2002-2008.10.1016/j.enbuild.2008.05.002 Search in Google Scholar

[6] BANSAL, Naresh K. BHATTACHARYA, Amitabh. Parametric equations for energy and load estimations for buildings in India. Applied thermal engineering, 2009, vol. 29, no 17-18, p. 3710-3715.10.1016/j.applthermaleng.2009.07.002 Search in Google Scholar

[7] LI, D. H. W., WONG, Sai Li, et CHEUNG, King Lok. Energy performance regression models for office buildings with daylighting controls. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2008, vol. 222, no 6, p. 557-568 568.10.1243/09576509JPE620 Search in Google Scholar

[8] CATALINA, Tiberiu, VIRGONE, Joseph, et BLANCO, Eric. Development and validation of regression models to predict monthly heating demand for residential buildings. Energy and buildings, 2008, vol. 40, no 10, p. 1825-1832.10.1016/j.enbuild.2008.04.001 Search in Google Scholar

[9] RATTI, Carlo, BAKER, Nick, et STEEMERS, Koen. Energy consumption and urban texture. Energy and buildings, 2005, vol. 37, no 7, p. 762-776.10.1016/j.enbuild.2004.10.010 Search in Google Scholar

[10] DASCALAKI, Elena G., DROUTSA, Kaliopi, GAGLIA, Athina G., et al. Data collection and analysis of the building stock and its energy performance—An example for Hellenic buildings. Energy and Buildings, 2010, vol. 42, no 8, p. 1231-1237.10.1016/j.enbuild.2010.02.014 Search in Google Scholar

[11] SALAT, Serge. Les villes et les formesurbaines: sur l’urbanisme durable. France, 2011. Search in Google Scholar

[12] BOUKARTA, Soufiane. BEREZOWSKA-AZZAG, Ewa. 'Urban island' as an energy assessment tool: The case of Mouzaia, Algeria. Journal of Applied Engineering Science, 2017, vol. 15, no 2, p. 128-139.10.5937/jaes15-12951 Search in Google Scholar

[13] BARTIAUX, Françoise. A socio-anthropological approach to energy-related behaviours and innovations at the household level. ECEEE (European Council for Energy-Efficient Economy): ECEEE 2003 summer study proceedings–Time to turn down energy demand, 2003, p. 1239-1250. Search in Google Scholar

[14] SWAN, Lukas G. et UGURSAL, V. Ismet. Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renewable and sustainable energy reviews, 2009, vol. 13, no 8, p. 1819-1835.10.1016/j.rser.2008.09.033 Search in Google Scholar

[15] SUBRÉMON, H. Pour une anthropologie sensible de la consommation d’énergie. Université de Paris X-Nanterre. 2009. PHD dissertation, France. Search in Google Scholar

[16] YU, Zhun, FUNG, Benjamin CM, HAGHIGHAT, Fariborz, et al. A systematic procedure to study the influence of occupant behavior on building energy consumption. Energy and buildings, 2011, vol. 43, no 6, p. 1409-1417.10.1016/j.enbuild.2011.02.002 Search in Google Scholar

[17] SHAKOURI, Mahmoud, BANIHASHEMI NAMINI, S. S., et JAVAHERI, Amin. Analysis and Comparison of Impacts of Design Optimization Approach with Occupant Behaviour on Energy Consumption Reduction in Residential Buildings. International Journal of Engineering and Technology, 2012. Search in Google Scholar

[18] OUYANG, Jinlong et HOKAO, Kazunori. Energy-saving potential by improving occupants’ behavior in urban residential sector in Hangzhou City, China. Energy and buildings, 2009, vol. 41, no 7, p. 711-720.10.1016/j.enbuild.2009.02.003 Search in Google Scholar

[19] DALL’O’, Giuliano, Annalisa GALANTE, Marco TORRI, “A methodology for the energy performance classification of residential building stock on an urban scale”. Energy and Buildings 48 (2012) 211–219. Search in Google Scholar

[20] HONG, Tianzhen et LIN, Hung-Wen. Occupant behavior: impact on energy use of private offices. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2013. Search in Google Scholar

[21] ABUIMARA, Tareq, O'BRIEN, William, et GUNAY, Burak. Quantifying the impact of occupants’ spatial distributions on office buildings energy and comfort performance. Energy and Buildings, 2021, vol. 233, p. 110695.10.1016/j.enbuild.2020.110695 Search in Google Scholar

[22] BOUKARTA, Soufiane. BEREZOWSKA-AZZAG, Ewa. Energy demand of occupant’s spatial modification in residential buildings. Case study of Médéa, Algeria. Selected Scientific Papers-Journal of Civil Engineering, 2018, vol. 13, p. 15-28.10.1515/sspjce-2018-0002 Search in Google Scholar

[23] STEEMERS, Koen. Energy and the city: density, buildings and transport. Energy and buildings, 2003, vol. 35, no 1, p. 3-14.10.1016/S0378-7788(02)00075-0 Search in Google Scholar

[24] MAÏZIA, Mindjid, SÈZE, Claire, BERGE, Sébastien, et al. Energy requirements of characteristic urban blocks. Proc. of CISBAT 2009-Renewables in a changing climate-From Nano to urban scale, 2009. Search in Google Scholar

[25] CAPUTO, Paola, COSTA, Gaia, et FERRARI, Simone. A supporting method for defining energy strategies in the building sector at urban scale. Energy Policy, 2013, vol. 55, p. 261-270.10.1016/j.enpol.2012.12.006 Search in Google Scholar

[26] ALI-TOUDERT, Fazia et WEIDHAUS, Juliane. Numerical assessment and optimization of a low- energy residential building for Mediterranean and Saharan climates using a pilot project in Algeria. Renewable Energy, 2017, vol. 101, p. 327-346.10.1016/j.renene.2016.08.043 Search in Google Scholar

[27] LI, Cheng, LI, Junxiang, et WU, Jianguo. What drives urban growth in China? A multi-scale comparative analysis. Applied geography, 2018, vol. 98, p. 43-51.10.1016/j.apgeog.2018.07.002 Search in Google Scholar

[28] KIM, Hae-Young. Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. Restorative dentistry & endodontics, 2013, vol. 38, no 1, p. 52-54.10.5395/rde.2013.38.1.52359158723495371 Search in Google Scholar

[29] NEILL, Simon P. et HASHEMI, M. Reza. Ocean modelling for resource characterization. Fundamentals of ocean renewable energy, 2018, p. 193-235.10.1016/B978-0-12-810448-4.00008-2 Search in Google Scholar

[30] Hastie, T., Tibshirani, R., & Friedman, J. (2009). Linear methods for regression. In The elements of statistical learning (pp. 43-99). Springer, New York, NY.10.1007/978-0-387-84858-7_3 Search in Google Scholar

[31] METEOTEST, Software METEONORM 7, 2016. https://meteonorm.com/en/. Search in Google Scholar

[32] DTR C3.2, Règlement Thermique des Bâtiments d’Habitation - Règles de calcul des déperditions Calorifiques, Fascicule 1, Document Technique Réglementaire, Ministère de l’habitat et de l’urbanisme, CNERIB, Alger, 2004. Search in Google Scholar

[33] UCLA, Climate Consultant 6.0, 2017. www.energy-design-tools.aud.ucla.edu/climate-consultant/. Search in Google Scholar

[34] SANTOS NOBRE, Juvêncio et DA MOTTA SINGER, Julio. Residual analysis for linear mixed models. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 2007, vol. 49, no 6, p. 863-875.10.1002/bimj.20061034117638292 Search in Google Scholar

[35] BOUKARTA, Soufiane. Déterminants de la forme urbaine générant le potentiel de maitrise de l’énergie en zone semi-aride. 2019. PHD dissertation. Ecole polytechnique d’architecture et d’urbanisme (EPAU). Search in Google Scholar

[36] TAHMASEBI, Mohammad Mahdi, BANIHASHEMI, Saeed, et HASSANABADI, Mahmoud Shakouri. Assessment of the variation impacts of window on energy consumption and carbon footprint. Procedia engineering, 2011, vol. 21, p. 820-828.10.1016/j.proeng.2011.11.2083 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo