Uneingeschränkter Zugang

Sampling bias in presence-only data used for species distribution modelling: theory and methods for detecting sample bias and its effects on models


Zitieren

Aarvik, L., Hansen, L.O. & Kononenko, V. 2009. Norges sommerfugler. Håndbok over Norges dagsommerfugler og nattsvermere. – Norwegian Entomological Society & Natural History Museum, Univ. of Oslo, Oslo.Search in Google Scholar

Ahti, T., Hämet-Ahti, L. & Jalas, J. 1968. Vegetation zones and their sections in northwestern Europe. – Annls bot. fenn. 5: 169-211.Search in Google Scholar

Anderson, R.P. 2012. Harnessing the world’s biodiversity data: promise and peril in ecological niche modeling of species distributions. – Ann. N.Y. Acad. Sci. 1260: 66-80.10.1111/j.1749-6632.2011.06440.xSearch in Google Scholar

Anderson, R.P. & Gonzalez, I.J. 2011. Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. – Ecol. Modelling 222: 2796–2811.10.1016/j.ecolmodel.2011.04.011Search in Google Scholar

Anderson, R.P., Peterson, A.T. & Gómez-Laverde, M. 2002. Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. – Oikos 98: 3–16.10.1034/j.1600-0706.2002.t01-1-980116.xSearch in Google Scholar

Araújo, M.B. & Guisan, A. 2006. Five (or so) challenges for species distribution modelling. –J. Biogeogr. 33: 1677–1688.10.1111/j.1365-2699.2006.01584.xSearch in Google Scholar

Araújo, M.B. & Luoto, M. 2007. The importance of biotic interactions for modelling species distributions under climate change. – Global Ecol. Biogeogr. 16: 743–753.10.1111/j.1466-8238.2007.00359.xSearch in Google Scholar

Austin, M. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. – Ecol. modelling 157: 101–118.10.1016/S0304-3800(02)00205-3Search in Google Scholar

Austin, M. 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. – Ecol. Modelling 200: 1–19.10.1016/j.ecolmodel.2006.07.005Search in Google Scholar

Austin, M. & Smith, T., 1989. A new model for the continuum concept. – Vegetatio 83: 35–47.10.1007/BF00031679Search in Google Scholar

Austin, M.P. & Gaywood, M.J., 1994. Current problems of environmental gradients and species response curves in relation to continuum theory. – Journal Veg. Sci. 5: 473–482.10.2307/3235973Search in Google Scholar

Bakkestuen, V., Erikstad, L. & Halvorsen, R. 2008. Step-less models for regional environmental variation in Norway. – J. Biogeogr. 35: 1906–1922.10.1111/j.1365-2699.2008.01941.xSearch in Google Scholar

Bartsch, H., Binkiewitz, E., Rådén, A. & Nasibov, E. 2009. Nationalnyckeln till Sveriges flora och fauna. Tvåvingar: Blomflugor: Syrphinae. Diptera: Syrphidae: Syrphinae. – ArtDatabanken, Uppsala.Search in Google Scholar

Bean, W.T., Stafford, R. & Brashares, J.S. 2012. The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models. –Ecography 35: 250–258.10.1111/j.1600-0587.2011.06545.xSearch in Google Scholar

Boakes, E.H., McGowan, P.J., Fuller, R.A., Chang-qing, D., Clark, N.E., O’Connor, K. & Mace, G.M. 2010. Distorted views of biodiversity: spatial and temporal bias in species occurrence data. – PLoS ONE 8: 1000385: 1–11.10.1371/journal.pbio.1000385287938920532234Search in Google Scholar

Boulangeat, I., Gravel, D. & Thuiller, W. 2012. Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. – Ecol. Letters 15: 584–593.10.1111/j.1461-0248.2012.01772.x399963922462813Search in Google Scholar

Brown, J.H. 1984. On the relationship between abundance and distribution of species. – Am. Nat. 124: 255–279.10.1086/284267Search in Google Scholar

Brown, J.H., Stevens, G.C. & Kaufman, D.M., 1996. The geographic range: size, shape, boundaries, and internal structure. – A. Rev. Ecol. Syst. 27: 597–623.10.1146/annurev.ecolsys.27.1.597Search in Google Scholar

Bystriakova, N., Peregrym, M., Erkens, R.H., Bezsmertna, O. & Schneider, H. 2012. Sampling bias in geographic and environmental space and its effect on the predictive power of species distribution models. – Syst. Biodiv. 10: 305–315.10.1080/14772000.2012.705357Search in Google Scholar

Cavanaugh, K.C., Siegel, D.A., Raimondi, P.T. & Alberto, F. 2014. Patch definition in metapopulation analysis: a graph theory approach to solve the mega-patch problem. – Ecology 95: 316-328.10.1890/13-0221.124669726Search in Google Scholar

Collins, S.L., Glenn, S.M. & Roberts, D.W., 1993. The hierarchical continuum concept. – J. Veg. Sci. 4: 149–156.10.2307/3236099Search in Google Scholar

Cox, C.B. & Moore, P.D. 2010. Biogeography: an ecological and evolutionary approach, ed. 8. – Wiley, Chichester.Search in Google Scholar

Crall, A.W., Jarnevich, C.S., Panke, B., Young, N., Renz, M. & Morisette, J. 2013. Using habitat suitability models to target invasive plant species surveys. – Ecol. Appl. 23: 60–72.10.1890/12-0465.123495636Search in Google Scholar

Crawley, M.J. 2013. The R book, ed. 2. – Wiley, Chichester.Search in Google Scholar

Dahl, E. & Birks, J., 1998. The phytogeography of Northern Europe. – Cambridge University Press, Cambridge.10.1017/CBO9780511565182Search in Google Scholar

Edvardsen, A., Bakkestuen, V. & Halvorsen, R. 2011. A fine-grained spatial prediction model for the red-listed vascular plant Scorzonera humilis. – Nord. J. Bot. 29: 495–504.10.1111/j.1756-1051.2010.00984.xSearch in Google Scholar

Ehnström, B. & Holmer, M. 2007. Nationalnyckeln till Sveriges flora och fauna. Skalbaggar: Långhorningar. Coleoptera: Cerambycidae. – ArtDatabanken, Uppsala.Search in Google Scholar

Eliasson, C.U., Ryrholm, N. & Gärdenfors, U. 2005. Nationalnyckeln till Sveriges flora och fauna: Fjärilar. Dagfjärilar: Hesperiidae–Nymphalidae. – ArtDatabanken, Uppsala.Search in Google Scholar

Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberon, J., Williams, S., Wisz, M.S. & Zimmermann, N.E. 2006. Novel methods improve prediction of species’ distributions from occurrence data. – Ecography 29: 129–151.10.1111/j.2006.0906-7590.04596.xSearch in Google Scholar

Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E. & Yates, C.J. 2011. A statistical explanation of MaxEnt for ecologists. – Divers. Distrib. 17: 43–57.10.1111/j.1472-4642.2010.00725.xSearch in Google Scholar

Ellenberg, H. 1954. Über enige Fortschritte der kausalen Vegetationskunde. – Vegetatio 5-6: 199-211.10.1007/BF00299574Search in Google Scholar

Erikstad, L., Bakkestuen, V., Bekkby, T. & Halvorsen, R. 2013. Impact of scale and quality of digital terrain models on predictability of seabed terrain types. – Mar. Geod. 36: 2–21.10.1080/01490419.2012.747454Search in Google Scholar

Fitzpatrick, M., Gotelli, N. & Ellison, A. 2013. MaxEnt versus MaxLike: empirical comparisons with ant species distributions. – Ecosphere 4: 55: 1–15.10.1890/ES13-00066.1Search in Google Scholar

Fourcade, Y., Engler, J.O., Rödder, D. & Secondi, J. 2014. Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. – PLoS ONE 9: e97322: 1-18.10.1371/journal.pone.0097122401826124818607Search in Google Scholar

Franklin, J. 2009. Mapping species distributions: spatial inference and prediction. – Cambridge University Press, Cambridge.10.1017/CBO9780511810602Search in Google Scholar

Gaston, K.J., Blackburn, T.M., Greenwood, J.J.D., Gregory, R.D., Quinn, R.M. & Lawton, J.H. 2000. Abundance–occupancy relationships. – J. Appl. Ecol. 37: 39–59.10.1046/j.1365-2664.2000.00485.xSearch in Google Scholar

Gaston, K.J., Chown, S.L. & Evans, K.L. 2008. Ecogeographical rules: elements of a synthesis. – J. Biogeogr. 35: 483–500.10.1111/j.1365-2699.2007.01772.xSearch in Google Scholar

Gauslaa, Y. 1984. Heat resistance and energy budget in different Scandinavian plants. – Ecography 7: 5–78.10.1111/j.1600-0587.1984.tb01098.xSearch in Google Scholar

Graham, J., Jarnevich, C., Young, N., Newman, G. & Stohlgren, T. 2011. How will climate change affect the potential distribution of Eurasian tree sparrows Passer montanus in North America? – Curr. Zool. 57: 648–654.10.1093/czoolo/57.5.648Search in Google Scholar

Grytnes, J.A., Birks, H.J.B. & Peglar, S.M., 1999. Plant species richness in Fennoscandia: evaluating the relative importance of climate and history. – Nord. J. Bot. 19: 489–503.10.1111/j.1756-1051.1999.tb01233.xSearch in Google Scholar

Guisan, A. & Zimmermann, N.E. 2000. Predictive habitat distribution models in ecology. – Ecol. Modelling 135: 147–186.10.1016/S0304-3800(00)00354-9Search in Google Scholar

Gutiérrez, D., Fernández, P., Seymour, A.S. & Jordano, D. 2005. Habitat distribution models: are mutualist distributions good predictors of their associates? – Ecol. Appl. 15: 3–18.10.1890/03-5344Search in Google Scholar

Halvorsen, R. 2012. A gradient analytic perspective on distribution modelling. – Sommerfeltia 35: 1–165.10.2478/v10208-011-0015-3Search in Google Scholar

Halvorsen, R. 2013. A maximum likelihood explanation of MaxEnt, and some implications for distribution modelling. – Sommerfeltia 36: 1–132.10.2478/v10208-011-0016-2Search in Google Scholar

Halvorsen, R., Mazzoni, S., Bryn, A. & Bakkestuen, V. 2015. Opportunities for improved distridistribution modelling practice via a strict maximum likelihood interpretation of MaxEnt. – Ecography 38: 172-183.10.1111/ecog.00565Search in Google Scholar

Hansen, V. & Larsson, S., 1973. Biller X. Blødvinger, klannere m.m.: Malacodermata, Fossipedes, Marcrodactylia og Brachymera. – Danm. Fauna 44: 41–42.Search in Google Scholar

Hanski, I. 1982. Dynamics of regional distribution: the core and satellite species hypothesis. – Oikos: 210–221.10.2307/3544021Search in Google Scholar

Hanski, I. 1998. Metapopulation dynamics. – Nature 396: 41–49.10.1038/23876Search in Google Scholar

Hanski, I. & Ovaskainen, O. 2000. The metapopulation capacity of a fragmented landscape. – Nature 404: 755–758.10.1038/3500806310783887Search in Google Scholar

Hanski, I. & Simberloff, D., 1997. The metapopulation approach, its history, conceptual domain, and application to conservation. In: Hanski, I. & Gilpin, M.E. (eds.), Metapopulation biology: ecology, genetics, and evolution, Academic Press, San Diego, pp. 5–26.10.1016/B978-012323445-2/50003-1Search in Google Scholar

Hastie, T., Tibshirani, R. & Friedman, J. 2009. The elements of statistical learning, ed. 2. – Springer, New York.10.1007/978-0-387-84858-7Search in Google Scholar

Hatteland, B.A., Roth, S., Andersen, A., Kaasa, K., Støa, B. & Solhøy, T. 2013. Distribution and spread of the invasive slug Arion vulgaris Moquin-Tandon in Norway. – Fauna norv. 32: 13–26.10.5324/fn.v32i0.1473Search in Google Scholar

Hebblewhite, M., Merrill, E. & McDonald, T. 2005. Spatial decomposition of predation risk using resource selection functions: an example in a wolf–elk predator–prey system. – Oikos 111: 101–111.10.1111/j.0030-1299.2005.13858.xSearch in Google Scholar

Heibl, C. & Renner, S.S. 2012. Distribution models and a dated phylogeny for Chilean Oxalis species reveal occupation of new habitats by different lineages, not rapid adaptive radiation. – Syst. Biol. 61: 823–834.10.1093/sysbio/sys034Search in Google Scholar

Heikkinen, R.K., Luoto, M., Virkkala, R., Pearson, R.G. & Körber, J.-H. 2007. Biotic interactions improve prediction of boreal bird distributions at macro-scales. – Global Ecol. Biogeogr. 16: 754–763.10.1111/j.1466-8238.2007.00345.xSearch in Google Scholar

Hengeveld, R. & Haeck, J., 1982. The distribution of abundance. I. Measurements. – J. Biogeogr. 9: 303–316.10.2307/2844717Search in Google Scholar

Huston, M.A. 2002. Introductory essay: critical issues for improving predictions. In: Scott, J.M., Heglund, P.J., Morrison, M.L. Haufler, J.B., Raphael, M.G., Wall, W.A. & Samson, F.B. (eds) Predicting species occurrences: issues of accuracy and scale, Island Press, Washington, DC, pp. 7–21.Search in Google Scholar

Jansen, F. & Oksanen, J. 2013. How to model species responses along ecological gradients – Huisman–Olff–Fresco models revisited. – J. Veg. Sci. 24: 1108–1117.10.1111/jvs.12050Search in Google Scholar

Jaynes, E.T. 1957a. Information theory and statistical mechanics. – Phys. Rev. 106: 620–630.10.1103/PhysRev.106.620Search in Google Scholar

Jaynes, E.T. 1957b. Information theory and statistical mechanics 2. – Phys. Rev. 108: 171–190.10.1103/PhysRev.108.171Search in Google Scholar

Jiménez-Valverde, A., Lobo, J. & Hortal, J. 2008. Not as good as they seem: the importance of concepts in species distribution modelling. – Divers. Distrib. 14: 885-890.10.1111/j.1472-4642.2008.00496.xSearch in Google Scholar

Kadmon, R., Farber, O. & Danin, A. 2003. A systematic analysis of factors affecting the performance of climatic envelope models. – Ecol. Appl. 13: 853–867.10.1890/1051-0761(2003)013[0853:ASAOFA]2.0.CO;2Search in Google Scholar

Kramer-Schadt, S., Niedballa, J., Pilgrim, J.D., Schröder, B., Lindenborn, J., Reinfelder, V., Stillfried, M., Heckmann, I., Scharf, A.K., Augeri, D.M., Cheyne, S.M., Hearn, A.J., Ross, J., Macdonald, D.W., Mathai, J., Eaton, J., Marshall, A.J., Semiadi, G., Rustam, R., Bernard, H., Alfred, R., Samejima, H., Duckworth, J.W., Breitenmoser-Wuersten, C., Belant, J.L., Hofer, H. & Wilting, A. 2013. The importance of correcting for sampling bias in MaxEnt species distribution models. – Divers. Distrib. 19: 1366-1379.10.1111/ddi.12096Search in Google Scholar

Leathwick, J. & Austin, M. 2001. Competitive interactions between tree species in New Zealand’s old-growth indigenous forests. – Ecology 82: 2560–2573.10.1890/0012-9658(2001)082[2560:CIBTSI]2.0.CO;2Search in Google Scholar

Lobo, J.M. 2008. More complex distribution models or more representative data? – Biodiv. Inform. 5: 14–19.10.17161/bi.v5i0.40Search in Google Scholar

Loehle, C. 2012. Relative frequency function models for species distribution modeling. – Ecography 35: 487–498.10.1111/j.1600-0587.2012.07389.xSearch in Google Scholar

Loiselle, B.A., Jørgensen, P.M., Consiglio, T., Jiménez, I., Blake, J.G., Lohmann, L.G. & Montiel, O.M. 2008. Predicting species distributions from herbarium collections: does climate bias in collection sampling influence model outcomes? – J. Biogeogr. 35: 105–116.Search in Google Scholar

MacKenzie, D.I., Nichols, J.D., Royle, J.A., Pollock, K.H., Bailey, L.L. & Hines, J.E. 2005. Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. – Academic Press, Amsterdam.Search in Google Scholar

Mateo, R.G., Croat, T.B., Felicísimo, Á.M. & Muñoz, J. 2010. Profile or group discriminative techniques? Generating reliable species distribution models using pseudo-absences and target-group absences from natural history collections. – Divers. Distrib. 16: 84–94.10.1111/j.1472-4642.2009.00617.xSearch in Google Scholar

Mazzoni, S., Halvorsen, R. & Bakkestuen, V. 2015. MIAT: Modular R-wrappers for flexible implementation of MaxEnt Distribution Modelling. – Ecol. Informatics 30: 215-221.10.1016/j.ecoinf.2015.07.001Search in Google Scholar

McGill, B. & Collins, C. 2003. A unified theory for macroecology based on spatial patterns of abundance. – Evol. Ecol. Res. 5: 469–492.Search in Google Scholar

Meier, E.S., Kienast, F., Pearman, P.B., Svenning, J.-C., Thuiller, W., Araújo, M.B., Guisan, A. & Zimmermann, N.E. 2010. Biotic and abiotic variables show little redundancy in explaining tree species distributions. – Ecography 33: 1038–1048.10.1111/j.1600-0587.2010.06229.xSearch in Google Scholar

Merow, C., Smith, M.J. & Silander, J.A. 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. – Ecography 36: 1058–1069.10.1111/j.1600-0587.2013.07872.xSearch in Google Scholar

Millar, C.S. & Blouin-Demers, G. 2012. Habitat suitability modelling for species at risk is sensitive to algorithm and scale: A case study of Blanding’s turtle, Emydoidea blandingii, in Ontario, Canada. – J. Nat. Conserv. 20: 18–29.10.1016/j.jnc.2011.07.004Search in Google Scholar

Minchin, P.R. 1989. Montane vegetation of the Mt. Field massif, Tasmania: a test of some hypotheses about properties of community patterns. – Vegetatio 83: 97–110.10.1007/BF00031683Search in Google Scholar

Moen, A. 1999. National atlas of Norway: vegetation. – Norwegian Mapping Authority, Høne-foss.Search in Google Scholar

Oksanen, J. & Minchin, P.R. 2002. Continuum theory revisited: what shape are species responses along ecological gradients? – Ecol. Modelling 157: 119–129.10.1016/S0304-3800(02)00190-4Search in Google Scholar

Pearce, J. & Ferrier, S. 2000. Evaluating the predictive performance of habitat models developed using logistic regression. – Ecol. Modelling 133: 225–245.10.1016/S0304-3800(00)00322-7Search in Google Scholar

Pellissier, L., Pradervand, J.-N., Pottier, J., Dubuis, A., Maiorano, L. & Guisan, A. 2012. Climate-based empirical models show biased predictions of butterfly communities along environmental gradients. – Ecography 35: 684–692.10.1111/j.1600-0587.2011.07047.xSearch in Google Scholar

Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E. & Blair, M.E. 2017. Opening the black box: an open-source release of Maxent. – Ecography 40: 887-893.10.1111/ecog.03049Search in Google Scholar

Phillips, S.J., Anderson, R.P. & Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. – Ecol. Modelling 190. 231–259.10.1016/j.ecolmodel.2005.03.026Search in Google Scholar

Phillips, S.J. & Dudík, M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. – Ecography 31: 161–175.10.1111/j.0906-7590.2008.5203.xSearch in Google Scholar

Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwich, J.R. & Ferrier, S. 2009.Search in Google Scholar

Phillips, S.J., Dudík, M. & Schapire, R. 2004. A maximum entropy approach to species distribution modeling. – In: Anonymous (ed.), Proceedings of the 21st international conference on machine learning, ACM Press, New York, pp. 655-662.10.1145/1015330.1015412Search in Google Scholar

Phillips, S.J. & Elith, J. 2010. POC plots: calibrating species distribution models with presence-only data. – Ecology 91,: 2476-2484.10.1890/09-0760.120836469Search in Google Scholar

Primack, R.B. & Miao, S.L., 1992. Dispersal can limit local plant distribution. – Conserv. Biol. 6,:513–519.10.1046/j.1523-1739.1992.06040513.xSearch in Google Scholar

Redfern, J., Ferguson, M., Becker, E., Hyrenbach, K., Good, C.P., Barlow, J., Kaschner, K., Baumgartner, M.F., Forney, K., Ballance, L. 2006. Techniques for cetacean–habitat modeling. – Mar. Ecol. Prog. Ser. 310: 281-295.10.3354/meps310271Search in Google Scholar

Reineking, B. & Schröder, B. 2006. Constrain to perform: regularization of habitat models. – Ecol. Model. 193: 675–690.10.1016/j.ecolmodel.2005.10.003Search in Google Scholar

Renner, I.W., & Warton, D.I. 2013. Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. – Biometrics 69: 274–281.10.1111/j.1541-0420.2012.01824.x23379623Search in Google Scholar

Robertson, M.P., Cumming, G.S. & Erasmus, B.F.N. 2010. Getting the most out of atlas data. – Divers. Distrib. 16: 363-375.10.1111/j.1472-4642.2010.00639.xSearch in Google Scholar

Rydgren, K., Økland, R.H. & Økland, T. 2003. Species response curves along environmental gradients: a case study from SE Norwegian swamp forests. – J. Veg. Sci. 14: 869–880.10.1111/j.1654-1103.2003.tb02220.xSearch in Google Scholar

Schweiger, O., Heikkinen, R.K., Harpke, A., Hickler, T., Klotz, S., Kudrna, O., Kühn, I., Pöyry, J. & Settele, J. 2012. Increasing range mismatching of interacting species under global change is related to their ecological characteristics. – Global Ecol. Biogeogr. 21: 88–99.10.1111/j.1466-8238.2010.00607.xSearch in Google Scholar

Searcy, C.A. & Shaffer, H.B. 2014. Field validation supports novel niche modeling strategies in a cryptic endangered amphibian. – Ecography 37: 983-992.10.1111/ecog.00733Search in Google Scholar

Shmida, A. & Wilson, M.V. 1985. Biological determinants of species diversity. – J. Biogeogr. 12: 1-20.10.2307/2845026Search in Google Scholar

Skre, O. 1979. The regional distribution of vascular plants in Scandinavia with requirements for high summer temperatures. – Nor. J. Bot. 26: 295–318.Search in Google Scholar

Soberon, J. & Peterson, A.T. 2005. Interpretation of models of fundamental ecological niches and species’ distributional areas. – Biodivers. Informatics 2: 1-10..10.17161/bi.v2i0.4Search in Google Scholar

Stokland, J.N., Halvorsen, R. & Støa, B. 2011. Species distribution modelling—Effect of design and sample size of pseudo-absence observations. – Ecol. Model. 222: 1800–1809.10.1016/j.ecolmodel.2011.02.025Search in Google Scholar

Syfert, M.M., Smith, M.J. & Coomes, D.A. 2013. – PloS one 8: e55158: 1–10.10.1371/journal.pone.0055158Search in Google Scholar

ter Braak, C.J.F. & Prentice, I.C., 1988. A theory of gradient analysis. – Adv. Ecol. Res. 18: 271–317.10.1016/S0065-2504(08)60183-XSearch in Google Scholar

Tibshirani, R. 1996. Regression shrinkage and selection via the lasso. – J. R. Statist. Soc. Ser. B 58: 267-288.10.1111/j.2517-6161.1996.tb02080.xSearch in Google Scholar

Vollering, J., Mazzoni, S. & Halvorsen, R. 2016. Package ‘MIAmaxent’ Version 0.3.7. – The R foundation for statistical computing, http://cran.r-project.org.Search in Google Scholar

Warren, D.L. & Seifert, S.N. 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. – Ecol. Appl. 21: 335–342.10.1890/10-1171.121563566Search in Google Scholar

Westley, P.A., Ward, E.J. & Fleming, I.A. 2013. Fine-scale local adaptation in an invasive freshwater fish has evolved in contemporary time. – Proc. R. Soc. B: Biol. Sci. 280: e20122327.10.1098/rspb.2012.2327357440623193126Search in Google Scholar

Whittaker, R.H. 1956. Vegetation of the Great Smoky Mountains. – Ecol. Monogr. 26: 1–80.10.2307/1943577Search in Google Scholar

Whittaker, R.H. 1967. Gradient analysis of vegetation. – Biol. Rev. 42: 207–264.10.1111/j.1469-185X.1967.tb01419.x4859903Search in Google Scholar

Wollan, A.K., Bakkestuen, V., Kauserud, H., Gulden, G. & Halvorsen, R. 2008. Modelling and predicting fungal distribution patterns using herbarium data. – J. Biogeogr. 35: 2298–2310.10.1111/j.1365-2699.2008.01965.xSearch in Google Scholar

Yackulic, C.B., Chandler, R., Zipkin, E.F., Royle, J.A., Nichols, J.D., Grant, E.H.C. & Veran, S. 2013. Presence-only modelling using MAXENT: when can we trust the inferences? – Meth. Ecol. Evol. 4: 236–243.10.1111/2041-210x.12004Search in Google Scholar

Økland, R.H. 1986. Rescaling of ecological gradients. II. The effect of scale on symmetry of species response curves. – Nord. J. Bot. 6: 661–670.10.1111/j.1756-1051.1986.tb00465.xSearch in Google Scholar

Økland, R.H. 1990. Vegetation ecology: theory, methods and applications with reference to Fennoscandia. – Sommerfeltia Suppl. 1: 1-233.10.2478/som-1990-0003Search in Google Scholar

Økland, R.H. 1992. Studies in SE Fennoscandian mires: relevance to ecological theory. – J. Veg. Sci. 3: 279–284.10.2307/3235693Search in Google Scholar

eISSN:
2084-0098
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Biologie, Botanik, Ökologie, andere