Zitieren

Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol. 2014; 35(1): 3-11. Search in Google Scholar

Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: framework and proposal of a new classification and case definition. J Periodontol. 2018; 89 (Suppl 1): S159-S172. Search in Google Scholar

Petersen PE, Ogawa H. The global burden of periodontal disease: towards integration with chronic disease prevention and control. Periodontol 2000. 2012; 60(1): 15-39. Search in Google Scholar

Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, et al. Periodontitis: consensus report of workgroup 2 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. J Periodontol. 2018; 89 (Suppl 1): S173-S182. Search in Google Scholar

Graziani F, Gennai S, Solini A, Petrini M. A systematic review and meta-analysis of epidemiologic observational evidence on the effect of periodontitis on diabetes an update of the EFP-AAP review. J Clin Periodontol. 2018; 45(2): 167-187. Search in Google Scholar

Humphrey LL, Fu R, Buckley DI, Freeman M, Helfand M. Periodontal disease and coronary heart disease incidence: a systematic review and meta-analysis. J Gen Intern Med. 2008; 23(12): 2079-86. Search in Google Scholar

Chambrone L, Foz AM, Guglielmetti MR, Pannuti CM, Artese HP, Feres M, et al. Periodontitis and chronic kidney disease: a systematic review of the association of diseases and the effect of periodontal treatment on estimated glomerular filtration rate. J Clin Periodontol. 2013; 40(5): 443-56. Search in Google Scholar

Schenkein HA. Host responses in maintaining periodontal health and determining periodontal disease. Periodontol 2000. 2006; 40: 77-93. Search in Google Scholar

Michaud DS, Fu Z, Shi J, Chung M. Periodontal Disease, tooth loss, and cancer risk. Epidemiol Rev. 2017; 39(1):49-58. Search in Google Scholar

Chapple ILC, Mealey BL, Van Dyke TE, Bartold PM, Dommisch H, Eickholz P, et al. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. J Periodontol. 2018; 89 (Suppl 1): S74-S84. Search in Google Scholar

Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers. 2017 ; 3:17038. Search in Google Scholar

Schulz M, von Arx T, Altermatt HJ, Bosshardt D. Histology of periapical lesions obtained during apical surgery. J Endod. 2009; 35(5): 634-42. Search in Google Scholar

Kontogiannis TG, Tosios KI, Kerezoudis NP, Krithinakis S, Christopoulos P, Sklavounou A. Periapical lesions are not always a sequelae of pulpal necrosis: a retrospective study of 1521 biopsies. Int Endod J. 2015; 48(1): 68-73. Search in Google Scholar

Kakehashi S, Stanley Hr, Fitzgerald Rj. The effects of surgical exposures of dental pulps in germ-free and conventional laboratory rats. Oral Surg Oral Med Oral Pathol. 1965; 20: 340-9. Search in Google Scholar

Ricucci D, Siqueira JF Jr, Bate AL, Pitt Ford TR. Histologic investigation of root canal-treated teeth with apical periodontitis: a retrospective study from twenty-four patients. J Endod. 2009; 35(4): 493-502. Search in Google Scholar

Nair PN. Pathogenesis of apical periodontitis and the causes of endodontic failures. Crit Rev Oral Biol Med. 2004; 15(6): 348-81. Search in Google Scholar

Lang NP, Bartold PM. Periodontal health. J Periodontol. 2018; 89 (Suppl 1): S9-S16 Search in Google Scholar

Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010; 8(7): 481-90. Search in Google Scholar

Costalonga M, Herzberg MC. The oral microbiome and the immunobiology of periodontal disease and caries. Immunol Lett. 2014; 162(2): 22-38. Search in Google Scholar

Yost S, Duran-Pinedo AE, Teles R, Krishnan K, Frias-Lopez J. Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis. Genome Med. 2015; 7(1): 27. Search in Google Scholar

Feres M, Teles F, Teles R, Figueiredo LC, Faveri M. The subgingival periodontal microbiota of the aging mouth. Periodontol 2000. 2016; 72(1): 30-53. Search in Google Scholar

Balakrishnan B, Subramanian S, Mallia MB, Repaka K, Kaur S, Chandan R, Bhardwaj P, et al. Multifunctional core-shell glyconanoparticles for galectin-3-targeted, trigger-responsive combination chemotherapy. Biomacromolecules. 2020; 21(7): 2645-2660. Search in Google Scholar

Chen T, Yu WH, Izard J, Baranova OV, Lakshmanan A, Dewhirst FE. The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database (Oxford). 2010; 2010: baq013. Search in Google Scholar

Pérez-Chaparro PJ, Gonçalves C, Figueiredo LC, Faveri M, Lobão E, Tamashiro N, Duarte P, Feres M. Newly identified pathogens associated with periodontitis: a systematic review. J Dent Res. 2014; 93(9): 846-58. Search in Google Scholar

Haubek D, Ennibi OK, Poulsen K, Vaeth M, Poulsen S, Kilian M. Risk of aggressive periodontitis in adolescent carriers of the JP2 clone of Aggregatibacter (Actinobacillus) actinomycetemcomitans in Morocco: a prospective longitudinal cohort study. Lancet. 2008; 371(9608): 237-42. Search in Google Scholar

Mombelli A, Casagni F, Madianos PN. Can presence or absence of periodontal pathogens distinguish between subjects with chronic and aggressive periodontitis? A systematic review. J Clin Periodontol. 2002; 29 (Suppl 3): 10-21; Search in Google Scholar

Graves DT, Kang J, Andriankaja O, Wada K, Rossa C Jr. Animal models to study host-bacteria interactions involved in periodontitis. Front Oral Biol. 2012; 15: 117-32. Search in Google Scholar

Schou S, Holmstrup P, Kornman KS. Non-human primates used in studies of periodontal disease pathogenesis: a review of the literature. J Periodontol. 1993; 64(6): 497-508. Search in Google Scholar

Lin Z, Rios HF, Cochran DL. Emerging regenerative approaches for periodontal reconstruction: a systematic review from the AAP Regeneration Workshop. J Periodontol. 2015; 86 (Suppl 2): S134-52. Search in Google Scholar

Giannobile WV, Finkelman RD, Lynch SE. Comparison of canine and non-human primate animal models for periodontal regenerative therapy: results following a single administration of PDGF/IGF-I. J Periodontol. 1994; 65(12): 1158-68. Search in Google Scholar

England Dc, Winters Lm, Carpenter Le. The development of a breed of miniature swine; a preliminary report. Growth. 1954; 18(4): 207-14. Search in Google Scholar

Zhang L, Huang Y, Wang M, Guo Y, Liang J, Yang X, et al. development and genome sequencing of a laboratory- inbred miniature pig facilitates study of human diabetic disease. iScience. 2019; 19: 162-176. Search in Google Scholar

Yi H, Guo W, Chen W, Chen L, Ye J, Yang S. Miniature pigs: a large animal model of cochlear implantation. Am J Transl Res. 2016 ;8(12):5494-5502. Search in Google Scholar

Kantarci A, Hasturk H, Van Dyke TE. Animal models for periodontal regeneration and peri-implant responses. Periodontol 2000. 2015; 68(1): 66-82. Search in Google Scholar

Jang JH, Moon JH, Kim SG, Kim SY. P ulp regeneration with hemostatic matrices as a scaffold in an immature tooth minipig model. Sci Rep. 2020; 10(1): 12536. . Search in Google Scholar

Rea M, Bengazi F, Velez JU, De Rossi EF, Mainetti T, Botticelli D. Implants placed into alveoli with periapical lesions: an experimental study in dogs. Oral Maxillofac Surg. 2020. doi: 10.1007/s10006-020-00926-8. Search in Google Scholar

Albuquerque C, Morinha F, Requicha J, Martins T, Dias I, Guedes-Pinto H, et al. Canine periodontitis: the dog as an important model for periodontal studies. Vet J. 2012; 191(3): 299-305. Search in Google Scholar

Carcuac O, Abrahamsson I, Albouy JP, Linder E, Larsson L, Berglundh T. Experimental periodontitis and periimplantitis in dogs. Clin Oral Implants Res. 2013; 24(4): 363-71.. Search in Google Scholar

Charalampakis G, Abrahamsson I, Carcuac O, Dahlén G, Berglundh T. Microbiota in experimental periodontitis and peri-implantitis in dogs. Clin Oral Implants Res. 2014; 25(9): 1094-8. Search in Google Scholar

Torabinejad M, Bakland LK. An animal model for the study of immunopathogenesis of periapical lesions. J Endod. 1978; 4(9): 273-7. Search in Google Scholar

Page RC, Schroeder HE. Spontaneous chronic periodontitis in adult dogs. A clinical and histopathological survey. J Periodontol. 1981; 52(2): 60-73. Search in Google Scholar

Pavlica Z, Petelin M, Nemec A, Erzen D, Skaleric U. Measurement of total antioxidant capacity in gingival crevicular fluid and serum in dogs with periodontal disease. Am J Vet Res. 2004; 65(11):1584-8. Search in Google Scholar

Lindhe J, Hamp SE, Loe H. Experimental periodontitis in the beagle dog. Int Dent J. 1973; 23(3): 432-7. Search in Google Scholar

Oz HS, Puleo DA. Animal models for periodontal disease. J Biomed Biotechnol. 2011; 2011:754857. Search in Google Scholar

Kantarci A, Hasturk H, Van Dyke TE. Animal models for periodontal regeneration and peri-implant responses. Periodontol 2000. 2015; 68(1): 66-82. Search in Google Scholar

Cai X, Li C, Du G, Cao Z. Protective effects of baicalin on ligature-induced periodontitis in rats. J Periodontal Res. 2008; 43(1): 14-21. Search in Google Scholar

Klausen B. Microbiological and immunological aspects of experimental periodontal disease in rats: a review article. J Periodontol. 1991; 62(1): 59-73. Search in Google Scholar

Klausen B, Sfintescu C, Evans RT. Asymmetry in periodontal bone loss of gnotobiotic Sprague-Dawley rats. Arch Oral Biol. 1991; 36(9): 685-7. Search in Google Scholar

Yoneda N, Noiri Y, Matsui S, Kuremoto K, Maezono H, Ishimoto T, et al. Development of a root canal treatment model in the rat. Sci Rep. 2017; 7(1): 3315. Search in Google Scholar

Silva RAB, Sousa-Pereira AP, Lucisano MP, Romualdo PC, Paula-Silva FWG, Consolaro A, et al. Alendronate inhibits osteocyte apoptosis and inflammation via IL-6, inhibiting bone resorption in periapical lesions of ovariectomized rats. Int Endod J. 2020; 53(1): 84-96. Search in Google Scholar

Duan X, Gleason RC, Li F, Hosur KB, Duan X, Huang D, et al. Sex dimorphism in periodontitis in animal models. J Periodontal Res. 2016; 51(2): 196-202 Search in Google Scholar

Graves DT, Fine D, Teng YT, Van Dyke TE, Hajishengallis G. The use of rodent models to investigate hostbacteria interactions related to periodontal diseases. J Clin Periodontol. 2008; 35(2): 89-105. Search in Google Scholar

Foster BL, Ao M, Salmon CR, Chavez MB, Kolli TN, Tran AB, et al. Osteopontin regulates dentin and alveolar bone development and mineralization. Bone. 2018; 107: 196-207. Search in Google Scholar

Ernst W. Humanized mice in infectious diseases. Comp Immunol Microbiol Infect Dis. 2016; 49: 29-38. Search in Google Scholar

Abe T, Hajishengallis G. Optimization of the ligatureinduced periodontitis model in mice. J Immunol Methods. 2013; 394(1-2): 49-54. Search in Google Scholar

de Molon RS, Park CH, Jin Q, Sugai J, Cirelli JA. Characterization of ligature-induced experimental periodontitis. Microsc Res Tech. 2018; 81(12): 1412-1421. Search in Google Scholar

Suh JS, Lee SH, Fouladian Z, Lee JY, Kim T, Kang MK, et al. Rosuvastatin prevents the exacerbation of atherosclerosis in ligature-induced periodontal disease mouse model. Sci Rep. 2020; 10(1): 6383. Search in Google Scholar

Araújo AA, Morais HB, Medeiros CACX, Brito GAC, Guedes PMM, Hiyari S, et al. Gliclazide reduced oxidative stress, inflammation, and bone loss in an experimental periodontal disease model. J Appl Oral Sci. 2019; 27: e20180211. Search in Google Scholar

Hiyari S, Wong RL, Yaghsezian A, Naghibi A, Tetradis S, Camargo PM, et al. Ligature-induced peri-implantitis and periodontitis in mice. J Clin Periodontol. 2018; 45(1): 89-99. Search in Google Scholar

de Paiva Gonçalves V, Ortega AAC, Steffens JP, Spolidorio DMP, Rossa C, Spolidorio LC. Long-term testosterone depletion attenuates inflammatory bone resorption in the ligature-induced periodontal disease model. J Periodontol. 2018; 89(4): 466-475. Search in Google Scholar

Marchesan J, Girnary MS, Jing L, Miao MZ, Zhang S, Sun L, et al. An experimental murine model to study periodontitis. Nat Protoc. 2018; 13(10): 2247-2267. Search in Google Scholar

de Molon RS, de Avila ED, Boas Nogueira AV, Chaves de Souza JA, Avila-Campos MJ, de Andrade CR, et al. Evaluation of the host response in various models of induced periodontal disease in mice. J Periodontol. 2014; 85(3): 465-77. Search in Google Scholar

Boyer E, Leroyer P, Malherbe L, Fong SB, Loréal O, Bonnaure Mallet M, et al. Oral dysbiosis induced by Porphyromonas gingivalis is strain-dependent in mice. J Oral Microbiol. 2020; 12(1): 1832837. Search in Google Scholar

Garlet GP, Cardoso CR, Silva TA, Ferreira BR, Avila-Campos MJ, Cunha FQ, et al. Cytokine pattern determines the progression of experimental periodontal disease induced by Actinobacillus actinomycetemcomitans through the modulation of MMPs, RANKL, and their physiological inhibitors. Oral Microbiol Immunol. 2006; 21(1): 12-20. Search in Google Scholar

Virto L, Cano P, Jiménez-Ortega V, Fernández-Mateos P, González J, Esquifino AI, et al. Obesity and periodontitis: An experimental study to evaluate periodontal and systemic effects of comorbidity. J Periodontol. 2018; 89(2): 176-185. Search in Google Scholar

Kinane DF, Hajishengallis G. Polymicrobial infections, biofilms, and beyond. J Clin Periodontol. 2009; 36(5): 404-5. Search in Google Scholar

Li CH, Amar S. Morphometric, histomorphometric, and microcomputed tomographic analysis of periodontal inflammatory lesions in a murine model. J Periodontol. 2007; 78(6): 1120-8. Search in Google Scholar

Saadi-Thiers K, Huck O, Simonis P, Tilly P, Fabre JE, Tenenbaum H, et al. Periodontal and systemic responses in various mice models of experimental periodontitis: respective roles of inflammation duration and Porphyromonas gingivalis infection. J Periodontol. 2013; 84(3): 396-406. Search in Google Scholar

Rocha FRG, Delitto AE, de Souza JAC, González-Maldonado LA, Wallet SM, Rossa Junior C. Relevance of caspase-1 and NLRP3 inflammasome on inflammatory bone resorption in a murine model of periodontitis. Sci Rep. 2020; 10(1): 7823. Search in Google Scholar

Li Y, Lu Z, Zhang L, Kirkwood KL, Lopes-Virella MF, Huang Y. Acid sphingomyelinase deficiency exacerbates LPS-induced experimental periodontitis. Oral Dis. 2020; 26(3): 637-646. Search in Google Scholar

Akkaoui J, Yamada C, Duarte C, Ho A, Vardar-Sengul S, Kawai T, et al. Contribution of Porphyromonas gingivalis lipopolysaccharide to experimental periodontitis in relation to aging. Geroscience. 2021; 43(1):367-376. Search in Google Scholar

Howait M, Albassam A, Yamada C, Sasaki H, Bahammam L, Azuma MM, et al. Elevated expression of macrophage migration inhibitory factor promotes inflammatory bone resorption induced in a mouse model of periradicular periodontitis. J Immunol. 2019; 202(7): 2035-2043. Search in Google Scholar

Hasegawa T, Venkata Suresh V, Yahata Y, Nakano M, Suzuki S, Suzuki S, et al. Inhibition of the CXCL9-CXCR3 axis suppresses the progression of experimental apical periodontitis by blocking macrophage migration and activation. Sci Rep. 2021; 11(1): 2613. Search in Google Scholar

Goldman E, Reich E, Abramovitz I, Klutstein M. Inducing apical periodontitis in mice. J Vis Exp. 2019; 6: (150). Search in Google Scholar

Austah ON, Ruparel NB, Henry MA, Fajardo RJ, Schmitz JE, Diogenes A. Capsaicin-sensitive innervation modulates the development of apical periodontitis. J Endod. 2016; 42(10): 1496-502. Search in Google Scholar

de Oliveira KM, da Silva RA, Küchler EC, de Queiroz AM, Nelson Filho P, da Silva LA. Correlation between histomorphometric and micro-computed tomography analysis of periapical lesions in mice model. Ultrastruct Pathol. 2015; 39(3): 187-91. Search in Google Scholar

eISSN:
2956-2090
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Klinische Medizin, andere