Uneingeschränkter Zugang

Morphological and Functional Changes of Pituitary GH and PRL Cells Following Prolonged Exposure of Female Rats to Constant Light


Zitieren

Butler MP, Kriegsfeld LJ, Silver R. Circadian regulation of endocrine functions. In DW Pfaff, AP Arnold, AM Etgen, SE Fahrbach, RT Rubin (Eds.), Hormones, Brain and Behavior Online (pp. 473-507). San Diego: Academic Press, 2010. Search in Google Scholar

Lee TM, Smale L. Neuroendocrinology of behavioral rhythms. In A Lajtha, JD Blaustein (Eds.), Handbook of Neurochemistry and Molecular Neurobiology: Behavioral Neurochemistry, Neuroendocrinology and Molecular Neurobiology (pp. 835-67). Boston MA: Springer, 2007. Search in Google Scholar

Hastings M, O’Neill JS, Maywood ES. Circadian clocks: regulators of endocrine and metabolic rhythms. J Endocrinol. 2007; 195(2):187-98. Search in Google Scholar

Weibel L, Follenius M, Spiegel K, Gronfier C, Brandenberger G. Growth hormone secretion in night workers. Chronobiol Int. 1997; 14(1):49-60. Search in Google Scholar

Zhu X, Gleiberman AS, Rosenfeld MG. Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol Rev. 2007; 87(3):93363. Search in Google Scholar

Muller EE, Locatelli V, Cocchi D. Neuroendocrine control of growth hormone secretion. Physiol Rev. 1999; 79(2):511-607. Search in Google Scholar

Hull KL, Harvey S. Growth hormone: roles in female reproduction. J Endocrinol. 2001; 168(1):1-23. Search in Google Scholar

Veldhuis JD, Roemmich JN, Rogol AD. Gender and sexual maturation-dependent contrasts in the neuroregulation of growth hormone secretion in prepubertal and late adolescent males and females - a general clinical research center-based study. J Clin Endocrinol Metab. 2000; 85(7):2385-94. Search in Google Scholar

Pincus SM, Gevers E F, Robinson IC, van den Berg G, Roelfsema F, Hartman ML, Veldhuis JD. Females secrete growth hormone with more process irregularity than males in both humans and rats. Am J Physiol. 1996; 270(1 Pt 1):E107-15. Search in Google Scholar

Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev. 2000; 80(4):1523-631. Search in Google Scholar

Bethea CL, Neill JD. Lesions of the suprachiasmatic nuclei abolish the cervically stimulated prolactin surges in the rat. Endocrinology. 1980; 107(1):1-5. Search in Google Scholar

Sellix MT, Freeman ME. Circadian rhythms of neuroendocrine dopaminergic neuronal activity in ovariectomized rats. Neuroendocrinology. 2003; 77(1):59-70. Search in Google Scholar

Navara KJ, Nelson RJ. The dark side of light at night: physiological, epidemiological, and ecological consequences. J Pineal Res. 2007; 43(3):215-24. Search in Google Scholar

Knutsson A. Health disorders of shift workers. Occup Med (Lond). 2003; 53(2):103-8. Search in Google Scholar

Bellet MM, Sassone-Corsi P. Mammalian circadian clock and metabolism-the epigenetic link. J Cell Sci. 2010; 123(Pt 22):3837-48. Search in Google Scholar

Salgado-Delgado R, Tapia Osorio A, Saderi N, Escobar C. Disruption of circadian rhythms: a crucial factor in the etiology of depression. Depress Res Treat. 2011; 2011:839743. Search in Google Scholar

Hansen J. Increased breast cancer risk among women who work predominantly at night. Epidemiology. 2001; 12(1):74-7. Search in Google Scholar

Delibas N, Tuzmen N, Yonden Z, Altuntas I. Effect of functional pinealectomy on hippocampal lipid peroxidation, antioxidant enzymes and N-methyl-D-aspartate receptor subunits 2A and 2B in young and old rats. Neuro Endocrinol Lett. 2002; 23(4):345-50. Search in Google Scholar

Voiculescu SE, Le Duc D, Rosca AE, Zeca V, Chitimus DM, Arsene AL, Dragoi CM, Nicolae AC, Zagrean L, Schoneberg T, Zagrean AM. Behavioral and molecular effects of prenatal continuous light exposure in the adult rat. Brain Res. 2016; 1650:51-9. Search in Google Scholar

Hardy DF. The effect of constant light on the estrous cycle and behaviour of the female rat. Physiol Behav. 1970; 5(4):421-5. Search in Google Scholar

Miler M, Sošic-Jurjevic B, Nestorovic N, Ristic N, Medigovic I, Savin S, Milosevic V. Morphological and functional changes in pituitary-thyroid axis following prolonged exposure of female rats to constant light. J Morphol. 2014; 275(10):1161-72. Search in Google Scholar

Milosevic V, Nestorovic N, Negic N, Filipovic B, Brkic B, Starcevic V. Characteristics of the pituitary immunopositive ACTH cells in rat females after chronic exposure to constant light. Jugoslov Med Biohem. 2003; 22(1):27-32. Search in Google Scholar

Milosevic V, Trifunovic S, Sekulic, M, Sosic-Jurjevic B, Filipovic B, Negic N, Nestorovic N, Manojlovic- Stojanoski M, Starcevic V. Chronic exposure to constant light affects morphology and secretion of adrenal zona fasciculata cells in female rats. Gen Physiol Biophys. 2005; 24(3):299-309. Search in Google Scholar

Wideman CH, Murphy HM. Constant light induces alterations in melatonin levels, food intake, feed efficiency, visceral adiposity, and circadian rhythms in rats. Nutr Neurosci. 2009; 12(5):233-40. Search in Google Scholar

Vinogradova IA, Anisimov VN, Bukalev AV, Semenchenko AV, Zabezhinski MA. Circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in rats. Aging (Albany NY). 2009; 1(10): 855-65. Search in Google Scholar

Briaud SA, Zhang BL, Sannajust F. Continuous light exposure and sympathectomy suppress circadian rhythm of blood pressure in rats. J Cardiovasc Pharmacol Ther. 2004; 9(2):97-105. Search in Google Scholar

Walters KA, Allan CM, Handelsman DJ. Rodent models for human polycystic ovary syndrome. Biol Reprod. 2012; 86(5):149, 1-12. Search in Google Scholar

Milosevic V, Brkic B, Velkovski S, Sekulic M, Lovren M, Starcevic V, Severs WB. Morphometric and functional changes of rat pituitary somatotropes and lactotropes after central administration of somatostatin. Pharmacology. 1998; 57(1):28-34. Search in Google Scholar

Weibel ER. Stereological Methods. 1. Practical Methods for Biological Morphometry. New York: Academic Press,; pp 1-415, 1979. Search in Google Scholar

Francou M, Durdos M, Salvetti NR, Baravalle C, Rey F, Ortega HH. Characterization of pituitary cell populations in rats with induced polycystic ovaries. Cells Tissues Organs. 2008; 188(3):310-9. Search in Google Scholar

Bjelobaba I, Janjic MM, Kucka M, Stojilkovic SS. Cell type-Specific sexual dimorphism in rat pituitary gene expression during maturation. Biol Reprod. 2015; 93(1): 21, 1-9. Search in Google Scholar

Tannenbaum GS, Martin JB. Evidence for an endogenous ultradian rhythm governing growth hormone secretion in the rat. Endocrinology. 1976; 98(3):562-70. Search in Google Scholar

Relkin R. Effects of pinealectomy, constant light and darkness on growth hormone levels in the pituitary and plasma of the rat. J Endocrinol 1972; 53(2):289-93. Search in Google Scholar

Vaticon MD, Fernandez-Galaz C, Esquifino A, Tejero A, Aguilar E. Effects of constant light on prolactin secretion in adult female rats. Horm Res. 1980; 12(5): 277-88. Search in Google Scholar

Mhatre MC, Shah PN, Juneja HS. Effect of varying photoperiods on mammary morphology, DNA synthesis, and hormone profile in female rats. J Natl Cancer Inst. 1984; 72(6):1411-6. Search in Google Scholar

Claustrat B, Valatx JL, Harthe C, Brun J. Effect of constant light on prolactin and corticosterone rhythms evaluated using a noninvasive urine sampling protocol in the rat. Horm Metab Res. 2008; 40(6):398-403. Search in Google Scholar

Kizer JS, Zivin JA, Jacobowitz DM, Kopin IJ. The nyctohemeral rhythm of plasma prolactin: effects of ganglionectomy, pinealectomy, constant light, constant darkness or 6-OH-dopamine administration. Endocrinology. 1975; 96(5):1230-40. Search in Google Scholar

Ostrowska Z, Kos-Kudla B, Swietochowska E, Marek B, Kajdaniuk D, Ciesielska-Kopacz N. Influence of pinealectomy and long-term melatonin administration on GH-IGF-I axis function in male rats. Neuro Endocrinol Lett. 2001; 22(4):255-62. Search in Google Scholar

Valcavi R, Zini M, Maestroni GJ, Conti A, Portioli I. Melatonin stimulates growth hormone secretion through pathways other than the growth hormone-releasing hormone. Clin Endocrinol. (Oxf) 1993; 39(2):193-9. Search in Google Scholar

Mustonen AM, Nieminen P, Hyvarinen H. Preliminary evidence that pharmacologic melatonin treatment decreases rat ghrelin levels. Endocrine. 2001; 16(1): 43-6. Search in Google Scholar

Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, Hamelin M, Hreniuk DL, Palyha OC, Anderson J, Paress PS, Diaz C, Chou M, Liu KK, McKee KK, Pong SS, Chaung LY, Elbrecht A, Dashkevicz M, Heavens R, Rigby M, Sirinathsinghji DJ, Dean DC, Melillo DG, Patchett AA, Nargund R, Griffin PR, DeMartino JA, Gupta SK, Schaeffer JM, Smith RG, Van der Ploeg LH. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science. 1996; 273(5277):974-7. Search in Google Scholar

Zisapel N, Egozi Y, Laudon M. Inhibition by melatonin of dopamine release from rat hypothalamus in vitro: variations with sex and the estrous cycle. Neuroendocrinology. 1983; 37(1):41-7. Search in Google Scholar

Griffiths D, Bjoro T, Gautvik K, Haug E. Melatonin reduces the production and secretion of prolactin and growth hormone from rat pituitary cells in culture. Acta Physiol Scand. 1987; 131(1):43-9. Search in Google Scholar

Wittkowski W, Bockmann J, Kreutz MR, Bockers TM. Cell and molecular biology of the pars tuberalis of the pituitary. Int Rev Cytol. 1999; 185:157-94. Search in Google Scholar

Morgan PJ. The pars tuberalis: the missing link in the photoperiodic regulation of prolactin secretion? J Neuroendocrinol. 2000; 12(4):287-95. Search in Google Scholar

Messager S, Ross AW, Barrett P, Morgan PJ. Decoding photoperiodic time through Per1 and ICER gene amplitude. Proc Natl Acad Sci U S A. 1999; 96(17): 9938-43. Search in Google Scholar

von Gall C, Garabette ML, Kell CA, Frenzel S, Dehghani F, Schumm-Draeger PM, Weaver DR, Korf HW, Hastings MH, Stehle JH. Rhythmic gene expression in pituitary depends on heterologous sensitization by the neurohormone melatonin. Nat Neurosci. 2002; 5(3):234-8. Search in Google Scholar

Seggie JA, Brown GM. Stress response patterns of plasma corticosterone, prolactin, and growth hormone in the rat, following handling or exposure to novel environment. Can J Physiol Pharmacol. 1975; 53(4):629-37. Search in Google Scholar

Mazziotti G, Giustina A. Glucocorticoids and the regulation of growth hormone secretion. Nat Rev Endocrinol. 2013; 9(5):265-76. Search in Google Scholar

Dutia R, Kim AJ, Mosharov E, Savontaus E, Chua SCJr, Wardlaw SL. (). Regulation of prolactin in mice with altered hypothalamic melanocortin activity. Peptides. 2012; 37(1):6-12. Search in Google Scholar

Meinhardt UJ, Ho KK. Modulation of growth hormone action by sex steroids. Clin Endocrinol (Oxf). 2006; 65(4):413-22. Search in Google Scholar

eISSN:
2956-0454
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Klinische Medizin, andere