Uneingeschränkter Zugang

Antiapoptotic Proteins mcl-1 and bcl-2 as well as Growth Factors FGF and VEGF Influence Survival of Peripheral Blood and Bone Marrow Chronic Lymphocytic Leukemia Cells


Zitieren

1. Buggins AG & Pepper CJ. (2010) The role of Bcl-2 family proteins in chronic lymphocytic leukaemia. Leuk Res. 34(7):837-42 DOI:10.1016/j.leukres.2010.03.01110.1016/j.leukres.2010.03.011Search in Google Scholar

2. Veis DJ, Sorenson CM, Shutter JR & Korsmeyer SJ.(1993) Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell. 75:229-240. DOI: 10.1016/0092-8674(93)80065-M10.1016/0092-8674(93)80065-MSearch in Google Scholar

3. Opferman JT, Iwasaki H, Ong CC, Suh H, Mizuno S, Akashi K & Korsmeyer SJ. (2005) Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science. 307:1101-1104. DOI: 10.1126/science. 110611410.1126/scienceSearch in Google Scholar

4. Opferman JT, Letai A, Beard C, Sorcinelli MD, Ong CC & Korsmeyer SJ. (2003) Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature. 426:671-676. DOI: 10.1038/nature0206710.1038/nature0206714668867Search in Google Scholar

5. Cimmino, A., Calin, G.A., Fabbri, M. et al. (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 102: 13944–13949. DOI: 10.1073/pnas.050665410210.1073/pnas.0506654102123657716166262Search in Google Scholar

6. Burger JA, Ghia P, Rosenwald A & Caligaris-Cappio F.(2009) The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood. 114:3367–75. DOI: 10.1182/blood-2009-06-22532610.1182/blood-2009-06-225326496905219636060Search in Google Scholar

7. Maffei R, Martinelli S, Castelli I, Santachiara R, Zucchini P, et al (2010) Increased angiogenesis induced by chronic lymphocytic leukemia B cells is mediated by leukemia-derived Ang2 and VEGF. Leuk Res 34: 312–321. DOI: 10.1016/j.leukres.2009.06.02310.1016/j.leukres.2009.06.02319616847Search in Google Scholar

8. Farahani M, Treweeke AT, Toh CH, Till KJ, Harris RJ, et al (2005) Autocrine VEGF mediates the antiapoptotic effect of CD154 on CLL cells. Leukemia. 19:524–530. DOI: 10.1038/sj.leu.240363110.1038/sj.leu.240363115674425Search in Google Scholar

9. Gehrke I, Gandhirajan RK, Poll-Wolbeck SJ, Hallek M & Kreuzer KA (2011) Bone marrow stromal cell-derived vascular endothelial growth factor (VEGF) rather than chronic lymphocytic leukemia (CLL) cell-derived VEGF is essential for the apoptotic resistance of cultured CLL cells. Mol Med 17: 619–627. DOI: 10.2119/molmed.2010.0021010.2119/molmed.2010.00210314661821519633Search in Google Scholar

10. Akl MR, Nagpal P, Ayoub NM, Tai B, Prabhu SA, Capac CM, Gliksman M, Goy A & Suh KS. (2016) Molecular and clinical significance of fibroblast growth factor 2 (FGF2 /bFGF) in malignancies of solid and hematological cancers for personalized therapies. Oncotarget. 12;7(28):44735-44762. DOI: 10.18632/oncotarget.8203.10.18632/oncotarget.8203519013227007053Search in Google Scholar

11. Ribatti D, Vacca A, Rusnati M & Presta M. (2007) The discovery of basic fibroblast growth factor/fibroblast growth factor-2 and its role in haematological malignancies. Cytokine & Growth Factor Reviews 18: 327–334. DOI: DOI: 10.1016/j.cytogfr.2007.04.01110.1016/j.cytogfr.2007.04.01117537668Search in Google Scholar

12. Jovanović DD (2015). Prognostic markers and apoptosis of malignant lymphocytes derived from peripheral blood and bone marrow. Unpublished doctoral dissertation, University in Kragujevacv, Kragujevac, Serbia (in Serbian)Search in Google Scholar

13. Sieklucka M, Bojarska-Junak A, Surdacka A, Hus I, Wasik-Szczepanek E, Dmoszynska A, Wach M, Lewandowska M & Rolinski JM. (2008) Increased Apoptosis of Peripheral Blood and Bone Marrow B and T Cells Correlates with Advanced Stages and Poor Risk Factors in Patients with B-CLL. Blood (ASH Annual Meeting Abstracts). 112: 416210.1182/blood.V112.11.4162.4162Search in Google Scholar

14. Witkowska M, Nowak W, Cebula-Obrzut B, Majchrzak A, Medra A, Robak T & Smolewski P. (2014) Spontaneus in vitro apopotosis of de novo chronic lymphocytic leukemia cells correlates with risk of the disease progression. Cytometry B Clin Cytom, 86(6):410-7. DOI: 10.1002/cyto.b.2116310.1002/cytob.2116324470252Search in Google Scholar

15. Huang J, Fairbrother W & Reed JC. (2015) Therapeutic targeting of Bcl-2 family for treatment of B-cell malignancies. Expert Rev Hematol. 8(3):283–297. DOI: 10.1586/17474086.2015.102632110.1586/17474086.2015.102632125912824Search in Google Scholar

16. Longo P.G., Laurenti L., Gobessi S., Sica S., Leone G. & Efremov DG. (2008) The Akt/Mcl-1 pathway plays a prominent role in mediating antiapoptotic signals downstream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood. 111:846–855. DOI: 10.1182/blood-2007-05-08903710.1182/blood-2007-05-08903717928528Search in Google Scholar

17. Balakrishnan K, Burger JA, Fu M, Doifode T, Wierda WG & Gandhi V. (2014) Regulation of Mcl-1 expression in context to bone marrow stromal microenvironment in chronic lymphocytic leukemia. Neoplasia 2014;16:1036–46. DOI: 10.1016/j.neo.2014.10.002.10.1016/j.neo.2014.10.002430926025499217Search in Google Scholar

18. Kay NE, Bone ND, Tschumper RC, Howell KH, Geyer SM, Dewald GW et al. (2002) B-CLL cells are capable of synthesis and secretion of both pro- and anti-angiogenic molecules. Leukemia 16: 911–919. DOI:10.1038/sj.leu.240246710.1038/sj.leu.240246711986954Search in Google Scholar

19. Chen, H., Treweeke, A.T., West, D.C., Till, K.J., Cawley, J.C., Zuzel, M. et al (2000) In vitro and in vivo production of vascular endothelial growth factor by chronic lymphocytic leukaemia cells. Blood. 96:3181–318710.1182/blood.V96.9.3181Search in Google Scholar

20. Gehrke I, Gandhirajan RK, Poll-Wolbeck SJ, Hallek M & Kreuzer KA. (2011) Bone marrow stromal cellderived vascular endothelial growth factor (VEGF) rather than chronic lymphocytic leukemia (CLL) cellderived VEGF is essential for the apoptotic resistance of cultured CLL cells. Mol Med. 17(7–8):619–627.DOI: 10.2119/molmed.2010.0021010.2119/molmed.2010.00210314661821519633Search in Google Scholar

21. Lee YK, Shanafelt TD, Bone ND, Strege AK, Jelinek DF & Kay NE. (2005) VEGF receptors on chronic lymphocytic leukemia (CLL) B cells interact with STAT 1 and 3: implication for apoptosis resistance. Leukemia. 19, 513–523. DOI: DOI: 10.1038/sj.leu.240366710.1038/sj.leu.240366715703780Search in Google Scholar

22. Lee YK, Bone ND, Strege AK, Jelinek DF & Kay NE. (2004) VEGF receptor phosphorylation status and apoptosis is modulated by a green tea component, epigallocatechin-3-gallate (EGCG) in B-cell chronic lymphocytic leukemia. Blood 104: 788–794. DOI:10.1182/blood-2003-08-276310.1182/blood-2003-08-276314996703Search in Google Scholar

23. Maffei, R., Fiorcari, S., Vaisitti, T., Martinelli, S., Benatti, S., Debbia, G., Rossi, D., Zucchini, P., Potenza, L., Luppi, M., Gaidano, G., Deaglio, S. & Marasca, R. (2017) Macitentan, a double antagonist of endothelin receptors, efficiently impairs migration and microenvironmental survival signals in chronic lymphocytic leukemia. Oncotarget, 27, 90013–90027. DOI: 10.18632/oncotarget.2134110.18632/oncotarget.21341568572829163807Search in Google Scholar

24. Veronese L, Tournilhac O, Verrelle P, Davi F, Dighiero G, Chautard E et al. (2009) Strong correlation between VEGF and MCL-1 mRNA expression levels in B-cell chronic lymphocytic leukemia. Leukemia Research. 33(12):1623-6. DOI: 10.1016/j.leukres.2009.05.003.10.1016/j.leukres.2009.05.00319487028Search in Google Scholar

25. Aguayo A, Kantarjian H, Manshouri T, Gidel C, Estey E, Thomas D, Koller C, Estrov Z, O’Brien S, Keating M, Freireich E & Albitar M.(2000) Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood. 96:2240-2245.10.1182/blood.V96.6.2240Search in Google Scholar

26. Karsan A, Yee E, Poirier GG, Zhou P, Craig R & Harlant JM. (1997) Fibroblast Growth Factor-2 Inhibits Endothelial Cell Apoptosis by Bcl-2-Dependent and Independent Mechanisms. American Journal of Pathology. 151(6):1775-84.Search in Google Scholar

27. Akl MR, Nagpal P, Ayoub NM, Tai B, Prabhu SA, Capac CM et al. (2016) Molecular and clinical significance of fibroblast growth factor 2 (FGF2 /bFGF) in malignancies of solid and hematological cancers for personalized therapies. Oncotarget 7(28):44735-62. DOI: 10.18632/oncotarget.820310.18632/oncotarget.8203519013227007053Search in Google Scholar

28. Krejci P, Dvorakova D, Krahulcova E, Pachernik J, Mayer J, Hampl A & Dvorak P. (2001) FGF-2 abnormalities in B cell chronic lymphocytic and chronic myeloid leukemias. Leukemia. 15:228-237.10.1038/sj.leu.240201211236938Search in Google Scholar

29. Kini AR, Kay NE & Peterson LC. (2000) Increased bone marrow angiogenesis in B cell chronic lymphocytic leukemia. Leukemia. 14:1414-1418. DOI: 10.1038/sj.leu.240182510.1038/sj.leu.240182510942237Search in Google Scholar

30. König A, Menzel T, Lynen S, Wrazel L, Rosén A, Al-Katib A, Raveche E & Gabrilove JL. (1997) Basic fibroblast growth factor (bFGF) upregulates the expression of bcl-2 in B cell chronic lymphocytic leukemia cell lines resulting in delaying apoptosis. Leukemia. 11(2):258–2610.1038/sj.leu.24005569009090Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Klinische Medizin, andere