Uneingeschränkter Zugang

Relationships between Shear Strength Parameters with Mineralogy and Index Properties of Compacted, Unsaturated Soils

, ,  und   
24. März 2025

Zitieren
COVER HERUNTERLADEN

Figure 1:

Sampling location map (https://www.exploresouthafrica.net/map/).
Sampling location map (https://www.exploresouthafrica.net/map/).

Figure 2:

Whatman No. 42 filter paper calibration curve [4].
Whatman No. 42 filter paper calibration curve [4].

Figure 3:

Triaxial testing apparatus.
Triaxial testing apparatus.

Figure 4:

Typical specimen before and after failure.
Typical specimen before and after failure.

Figure 5:

Unsaturated failure envelope for WIS
Unsaturated failure envelope for WIS

Figure 6

Unsaturated failure envelope for BFS.
Unsaturated failure envelope for BFS.

Figure 7:

3D relationship of (ϕ‘) dependence on W (%) and Gs.
3D relationship of (ϕ‘) dependence on W (%) and Gs.

Figure 8:

3D relationship of (ϕ‘) dependence on liquid limit and plasticity index.
3D relationship of (ϕ‘) dependence on liquid limit and plasticity index.

Figure 9:

3D relationship of (ϕ‘) dependence on fine content (%) and clay content (%).
3D relationship of (ϕ‘) dependence on fine content (%) and clay content (%).

Figure 10:

3D relationship of (ϕ‘) dependence on dry unit weight and void ratio.
3D relationship of (ϕ‘) dependence on dry unit weight and void ratio.

Figure 11:

3D relationship of (ϕ‘) dependence on FSR and FSI (%).
3D relationship of (ϕ‘) dependence on FSR and FSI (%).

Figure 12:

3D relationship of (ϕ‘) dependence on smectite (%) and plagioclase (%).
3D relationship of (ϕ‘) dependence on smectite (%) and plagioclase (%).

Figure 13:

3D relationship of (ϕb) dependence on fine content (%) and clay content (%).
3D relationship of (ϕb) dependence on fine content (%) and clay content (%).

Figure 14:

3D relationship of (ϕb) dependence on liquid limit (%) and plasticity index (%).
3D relationship of (ϕb) dependence on liquid limit (%) and plasticity index (%).

Figure 15:

3D relationship of (ϕb) dependence on Gs and dry unit weight.
3D relationship of (ϕb) dependence on Gs and dry unit weight.

Figure 16:

3D relationship of (ϕb) dependence on water content (%) and air entry value.
3D relationship of (ϕb) dependence on water content (%) and air entry value.

Figure 17:

3D relationship of (ϕb) dependence on smectite (%) and FSI (%)
3D relationship of (ϕb) dependence on smectite (%) and FSI (%)

Figure 18:

3D relationship of (ϕb) dependence on plagioclase (%) and K-feldspar (%)
3D relationship of (ϕb) dependence on plagioclase (%) and K-feldspar (%)

Figure 19:

3D relationship of (c‘) dependence on water content (%) and specific gravity.
3D relationship of (c‘) dependence on water content (%) and specific gravity.

Figure 20:

3D relationship of (c‘) dependence on liquid limit (%) and plasticity index (%).
3D relationship of (c‘) dependence on liquid limit (%) and plasticity index (%).

Figure 21:

3D relationship of (c‘) dependence on fine content (%) and clay content (%).
3D relationship of (c‘) dependence on fine content (%) and clay content (%).

Figure 22:

3D relationship of (c‘) dependence on dry unit weight and void ratio.
3D relationship of (c‘) dependence on dry unit weight and void ratio.

Figure 23:

3D relationship of (c‘) dependence on smectite (%) and free swell index (%).
3D relationship of (c‘) dependence on smectite (%) and free swell index (%).

Figure 24:

3D relationship of (c‘) dependence on K-feldspar (%) and plagioclase (%).
3D relationship of (c‘) dependence on K-feldspar (%) and plagioclase (%).

Figure 37

Correlation diagram of ϕ‘ and the soil properties.
Correlation diagram of ϕ‘ and the soil properties.

Figure 38:

Correlation diagram of ϕb and the soil properties.
Correlation diagram of ϕb and the soil properties.

Figure 39:

Correlation diagram of c‘ and the soil properties.
Correlation diagram of c‘ and the soil properties.

Figure 25:

Grain size distribution curves of four soil samples
Grain size distribution curves of four soil samples

Figure 26:

Plasticity chart of four soil samples
Plasticity chart of four soil samples

Figure 27:

Soil–water characteristic curve for BFS as compacted
Soil–water characteristic curve for BFS as compacted

Figure 28:

Soil–water characteristic curve for WIS as compacted
Soil–water characteristic curve for WIS as compacted

Figure 29:

Soil–water characteristic curve for WES as compacted
Soil–water characteristic curve for WES as compacted

Figure 30:

Soil–water characteristic curve for BES as compacted
Soil–water characteristic curve for BES as compacted

Figure 31:

Graph of correlations between friction angle (ϕ‘) and water content.
Graph of correlations between friction angle (ϕ‘) and water content.

Figure 32:

Graph of relationships between friction angle (ϕ‘) and specific gravity (Gs).
Graph of relationships between friction angle (ϕ‘) and specific gravity (Gs).

Figure 33:

Graph of correlations between friction angle (ϕ‘) and liquid limit (LL).
Graph of correlations between friction angle (ϕ‘) and liquid limit (LL).

Figure 34:

Graph of relationships between effective cohesion (c‘) and water content.
Graph of relationships between effective cohesion (c‘) and water content.

Figure 35:

Graph of correlations between effective cohesion (c‘) and specific gravity (Gs).
Graph of correlations between effective cohesion (c‘) and specific gravity (Gs).

Figure 36:

Graph of relationships between effective cohesion (ϕ‘) and liquid limit (LL).
Graph of relationships between effective cohesion (ϕ‘) and liquid limit (LL).

Swelling potential test results_

Soil Swelling potential Classification IS 2720 - 40 (1977) [38] Swelling potential classification, Sridharan & Prakash (2000) [39]

(FSI1), % Soil expansivity (FSR2) Soil expansivity
BFS 64.31 Moderate 1.64 Moderate
WIS 81.37 Moderate 1.73 Moderate
WES 116.60 High 2.20 High
BES 35.81 Moderate 1.17 Low

Suction test results_

Soils Soil water content (%) Dry unit weight, (kN/m3) Total suction (kPa) Matric suction (kPa) Osmotic suction (kPa) Air entry value (kPa)
BFS 12.06 15.60 5883.92 4741.62 1142.3 10
14.02 16.21 4064.22 3327.18 737.04
17.03 17.01 1923.09 1388.22 534.87
20.07 17.58 1036.11 671.89 364.22
24.8 17.20 340.034 200 140.034
WIS 14.98 15.60 7439.15 5984.56 1454.59 14.82
17.50 16.05 5410.66 4332.678 1077.982
21 16.58 3580.89 2748.30 832.59
24.03 16.85 1699.05 1199.35 499.70
28.06 16.70 816.77 450.227 366.543
WES 15.93 14.94 9926.183 7693.666 2232.517 16.13
19.25 15.48 6922.321 5227.777 1694.544
23.37 16.09 4011.482 2986.456 1025.026
26.14 16.29 2475.62 1778.651 696.969
29.10 15.85 1397.745 890.47 507.275
BES 9.18 16.35 4163.35 3312.26 851.09 6.00
12.42 18.01 2510.04 1982.31 527.73
14.54 18.95 830.926 538.11 292.816
17.23 19.60 323.818 225.609 98.209
20.30 19.10 109.66 79.70 29.96

X-ray diffraction results_

Soils Smectite (%) Silica (%) Group of feldspar minerals
Illite (%) Calcite (%)
K-feldspar (%) Plagioclase (%)
BFS 56.83 12.47 23.51 3.29 1.89 2.01
WIS 58.22 25.08 10.42 2.45 2.02 trace
WES 67.05 19.98 10.66 2.31 trace trace
BES 31.67 31.39 21.22 8.15 3.36 4.21

Shear strength equations of saturated and unsaturated soils_

Authors Equation Number
Terzaghi [80] τs=c‘+(σn-uw) tan(ϕ‘) 1
Fredlund and Rahardjo [60] τu=c‘+(σn-ua) tan(ϕ‘)+(ua-uw) tan(ϕb) 2
Vanapalli et al. [27] τu=c+σnuatanϕ+θθrθsθruauwtanϕ {\tau _{\rm{u}}} = c' + \left( {{\sigma _{\rm{n}}} - {{\rm{u}}_{\rm{a}}}} \right)\tan \left( {\phi '} \right) + \left( {{{\theta - {\theta _{\rm{r}}}} \over {{\theta _{\rm{s}}} - {\theta _{\rm{r}}}}}} \right)\left( {{{\rm{u}}_{\rm{a}}} - {{\rm{u}}_{\rm{w}}}} \right)\tan \left( {\phi '} \right) 3
Khalili and Khabbaz [25] τu=c‘+(σn-ua) tan(ϕ‘)+(χ)(ua-uw) tan(ϕ‘) 4
χ=uauwAEV0.55 \chi = {\left[ {{{\left( {{{\rm{u}}_{\rm{a}}} - {{\rm{u}}_{\rm{w}}}} \right)} \over {{\rm{AEV}}}}} \right]^{ - 0.55}}
Vanapalli and Fredlund [18] τu=c‘+(σn-ua) tan(ϕ‘)+χ(ua-uw) tan(ϕ‘) 5
χ=(Sr)k
k=0.98+0.0874 (PI)-0.001 (PI)2
Tekinsoy et al. [28] τu=c+σnuatanϕ+tanϕAEV+Patlnuauw+PatPat {\tau _{\rm{u}}} = {\rm{c}}' + \left( {{\sigma _{\rm{n}}} - {{\rm{u}}_{\rm{a}}}} \right)\tan \left( {\phi '} \right) + \tan \left( {\phi '} \right)\left( {{\rm{AEV}} + {\rm{Pat}}} \right)\ln \left[ {{{\left( {{{\rm{u}}_{\rm{a}}} - {{\rm{u}}_{\rm{w}}} } \right)}+{{\rm{P}}_{{\rm{at}}}} \over {{{\rm{P}}_{{\rm{at}}}}}}} \right] 6
Garven and Vanapalli [19] τu =c‘+(σn-ua) tan(ϕ‘)+ θk (ua-uw) tan(ϕ‘) 7
k=0.00161 PI2+0.0975 PI+1
Guan et al. [29]

τu =c‘+(σn-ua) tan(ϕ‘)+(ua-uw) tan(ϕb)

where ϕ‘=ϕb if (ua-uw)< AEV

τu =c‘+[(σn-ua)+AEV] tan(ϕ‘)+[(ua-uw)-AEV] bθk tan(ϕ‘)

if (ua-uw)≥ AEV

k=[log(ua - uw)-log(AEV)]y

For drying:

yd=0.502 ln(PI+2.7)-0.387

bd=-0.254{ln[nd(PI+4.4)]-0.387}2+2.114 {ln[nd(PI+4.4)] }-3.522

For wetting:

yw=3.55yd-3.00

bw=0.542bd (nd/nw)+0.389

8

ϕ‘ relationship with soil properties’ equations_

Correlation equations R2 Equation number
ϕ‘ = 3739.6e−1.753Gs (%) 0.72 11
ϕ‘ = 82.81e−0.04W (%) 0.71 12
ϕ‘ = 68.87e−0.012LL (%) 0.68 13
ϕ‘ = 51.04e−0.011PI (%) 0.64 14
ϕ‘ = 73.63e−0.012Fine-grained (%) 0.72 15
ϕ‘ = 52.34e−0.014Clay (%) 0.74 16
ϕ‘ =5.059e0.108gd (kN/m3) 0.62 17
ϕ‘ = 57.16e−0.932Void ratio 0.69 18
ϕ‘ = 63.49e−0.368FSR 0.74 19
ϕ‘ = 46.72e−0.004FSI (%) 0.70 20
ϕ‘ = 56.134e−0.01Smectite (%) 0.61 21
ϕ‘ = 26.81e0.0574 Plagioclase (%) 0.53 22

Unsaturated shear strength parameters_

Soil Water content (%) c‘ (kPa) tan (ϕ‘) (Degree) n-ua) (kPa) τs (kPa) (ua-uw) (kPa) tan (ϕb) Degree τu (kPa) τus
BFS 12.06 75.05 52.09 605.5 853 4741.62 6.77 1414.44 1.66
14.02 72.05 48.55 547.78 692 3327.18 6.77 1086.56 1.57
17.03 67.11 44.65 485.53 547 1388.22 6.77 711.25 1.30
20.07 58.10 39.66 406.30 395 671.89 6.77 474.56 1.20
24.80 51.54 32.71 333.87 266 200 6.77 289.67 1.09
WIS 14.98 69.42 50.75 537.59 727 5984.56 5.02 1253.44 1.72
17.50 63.89 47.18 492.32 595 4332.68 5.02 976.02 1.64
21 57.95 42.75 423.28 449 2748.30 5.02 690.80 1.54
24.03 55.60 37.21 365.56 333 1199.35 5.02 438.60 1.32
28.06 49.30 32.51 282.94 230 450.23 5.02 269.20 1.17
WES 15.93 62.39 42.07 452.71 471 7693.67 2.67 830.31 1.76
19.25 57.32 37.95 413.10 379 5227.78 2.67 623.62 1.65
23.37 50.11 34.31 328.78 274 2986.46 2.67 413.94 1.51
26.14 48.85 28.8 284.07 205 1778.65 2.67 288.08 1.41
29.1 45.31 24.92 234.84 154 890.47 2.67 196.01 1.27
BES 9.18 78.34 53.21 645.11 941 3312.26 10 1512.02 1.61
12.42 69.05 50.08 554.57 732 1982.31 10 1073.58 1.47
14.54 64.56 46.03 503.07 586 538.11 10 678.82 1.16
17.23 61.09 42.42 431.77 456 225.61 10 494.52 1.08
20.3 54.93 33.05 350.85 283 79.70 10 296.95 1.05

Degrees of correlation between dependent variables (Kalayci, 2010) [63]_

Coefficient of correlation (R2) Degrees of correlation
0.00 – 0.25 Very weak correlation
0.26 – 0.49 Weak correlation
0.50 – 0.69 Moderate correlation
0.70 – 0.89 Strong correlation
0.90 – 1.00 Very strong correlation

Material properties_

Soils Liquid limit (%) Plasticity index (%) Clay (%) Ac* Silt (%) Fine content (%) Sand (%) Gravel (%) Specific Gravity (Gs) USCS
BFS 58.98 36.82 30.40 1.21 29.11 59.51 29.39 10.09 2.64 CH
WIS 63.78 42.48 34.03 1.25 33.49 67.52 26.80 4.85 2.73 CH
WES 69.45 49.87 40.00 1.25 33.00 73.00 23.50 2.56 2.73 CH
BES 40.29 19.23 17.11 1.12 28.03 45.14 43.76 11.10 2.55 CL

Swelling potential classification [39]_

FSR Clay type Soil expansivity Dominant clay mineral type
=1 Non-swelling Negligible Kaolinite
1.0 – 1.5 Mixture of swelling and non-swelling Low Mixture of Kaolinitic and Montmorillonitic
1.5 – 2.0 Swelling Moderate Montmorillonitic
2.0 – 4.0 Swelling High Montmorillonitic
> 4.0 Swelling Very high Montmorillonitic

Sampling location coordinates_

Samples Global positioning system
BFS 29° 05′30,50″S / 26° 07′46,60″E
WES 27° 57′51,80″S / 26° 45′36,90″E
WIS 28° 30′43,50″S / 27° 00′12,80″E
BES 28° 13′23,40″S / 28° 19′23,00″E

ϕb relationship with soil properties’ equations_

Correlation equations R2 Equation number
ϕb = 106.51e−0.05Fine content (%) 0.92 23
ϕb = 27.04e−0.054Clay (%) 0.92 24
ϕb = 84.48e−0.048LL (%) 0.93 25
ϕb = 25.95e−0.046PI (%) 0.92 26
ϕb = 5.E + 08e−6.883Gs 0.88 27
ϕb = 0.0022e0.438gd (kNm3) 0.81 28
ϕb = 166.47e−0.161W (%) 0.88 29
ϕb = 20.29e−0.119AEV (kPa) 0.92 30
ϕb = 18 e−0.018FSI (%) 0.93 31
ϕb = 37.03e−0.038Smectite (%) 0.79 32
ϕb = 1.884e0.229Plagiocalse (%) 0.67 33
ϕb = 1.167e0.0833K-feldspar (%) 0.66 34

c‘ relationship with soil properties’ equations_

Correlation equations R2 Equation number
c‘ = 98.71e−0.03W (%) 0.73 35
c‘ = 1887e−1.341Gs 0.71 36
c‘ = 86.53e−0.009LL (%) 0.61 37
c‘ = 69.26e−0.008PI (%) 0.56 38
c‘ = 91.84e−0.009Fine content (%) 0.68 39
c‘ = 71.59e−0.01Clay (%) 0.71 40
c‘ = 75.759e−0.629Void ratio 0.63 41
c‘ = 13.201e0.0776gd (kN/m3) 0.54 42
c‘ = 73.71e−0.007Smectite (%) 0.52 43
c‘ = 65.22e−0.003FSI (%) 0.62 44
c‘ = 39.19e0.0162K-feldspar (%) 0.53 45
c‘ = 43.63e0.0407Plagioclase (%) 0.50 46

Compaction characteristics_

Soil OWC (%) γdmax (kN/m3)
BFS 20.10 17.60
WIS 24.00 16.90
WES 26.10 16.30
BES 17.20 19.60
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Geowissenschaften, Geowissenschaften, andere, Materialwissenschaft, Verbundwerkstoffe, Poröse Materialien, Physik, Mechanik und Fluiddynamik