Uneingeschränkter Zugang

Comparison of machine learning models predicting the pull-off strength of modified epoxy resin floors

,  und   
10. Nov. 2024

Zitieren
COVER HERUNTERLADEN

Szewczak, A., & Łagód, G. (2022). Adhesion of modified epoxy resin to a concrete Surface. Materials, 15(24), 8961. SzewczakA. ŁagódG. 2022 Adhesion of modified epoxy resin to a concrete Surface Materials 15 24 8961 Search in Google Scholar

Chowaniec, A., Sadowski, Ł., & Żak, A. (2020). The chemical and microstructural analysis of the adhesive properties of epoxy resin coatings modified using waste glass powder. Applied Surface Science, 504, 144373. ChowaniecA. SadowskiŁ. ŻakA. 2020 The chemical and microstructural analysis of the adhesive properties of epoxy resin coatings modified using waste glass powder Applied Surface Science 504 144373 Search in Google Scholar

Zhang, C., Li, W., Liu, C., Zhang, C., Cao, L., Kong, D., ... & Chen, S. (2022). Effect of covalent organic framework modified graphene oxide on anticorrosion and self-healing properties of epoxy resin coatings. Journal of Colloid and Interface Science, 608, 1025–1039. ZhangC. LiW. LiuC. ZhangC. CaoL. KongD. ChenS. 2022 Effect of covalent organic framework modified graphene oxide on anticorrosion and self-healing properties of epoxy resin coatings Journal of Colloid and Interface Science 608 1025 1039 Search in Google Scholar

Rudawska, A. (2024). The effects of temperature on mechanical properties of neat and montmorillonite reinforced epoxy compounds. The Journal of Adhesion, 1–34. RudawskaA. 2024 The effects of temperature on mechanical properties of neat and montmorillonite reinforced epoxy compounds The Journal of Adhesion 1 34 Search in Google Scholar

Ebead, U., & Younis, A. (2019). Pull-off characterization of FRCM/Concrete interface. Composites Part B: Engineering, 165, 545–553. EbeadU. YounisA. 2019 Pull-off characterization of FRCM/Concrete interface Composites Part B: Engineering 165 545 553 Search in Google Scholar

El Masri, Y., & Rakha, T. (2020). A scoping review of non-destructive testing (NDT) techniques in building performance diagnostic inspections. Construction and Building Materials, 265, 120542. El MasriY. RakhaT. 2020 A scoping review of non-destructive testing (NDT) techniques in building performance diagnostic inspections Construction and Building Materials 265 120542 Search in Google Scholar

Hoła, J., & Sadowski, Ł. (2022). Non-destructive testing in civil engineering. Applied Sciences, 12(14), 7187. HołaJ. SadowskiŁ. 2022 Non-destructive testing in civil engineering Applied Sciences 12 14 7187 Search in Google Scholar

Ali-Benyahia, K., Kenai, S., Ghrici, M., Sbartaï, Z. M., & Elachachi, S. M. (2023). Analysis of the accuracy of in-situ concrete characteristic compressive strength assessment in real structures using destructive and non-destructive testing methods. Construction and Building Materials, 366, 130161. Ali-BenyahiaK. KenaiS. GhriciM. SbartaïZ. M. ElachachiS. M. 2023 Analysis of the accuracy of in-situ concrete characteristic compressive strength assessment in real structures using destructive and non-destructive testing methods Construction and Building Materials 366 130161 Search in Google Scholar

Zapała-Sławeta, J. (2024). The use of computed tomography and scanning microscopy methods for assessing the alkaline reactivity of aggregate. Bulletin of the Polish Academy of Sciences Technical Sciences, e149814–e149814. Zapała-SławetaJ. 2024 The use of computed tomography and scanning microscopy methods for assessing the alkaline reactivity of aggregate Bulletin of the Polish Academy of Sciences Technical Sciences e149814 e149814 Search in Google Scholar

Anjum, A., Hrairi, M., Aabid, A., Yatim, N., & Ali, M. (2024). Damage detection in concrete structures with impedance data and machine learning. Bulletin of the Polish Academy of Sciences Technical Sciences, e149178–e149178. AnjumA. HrairiM. AabidA. YatimN. AliM. 2024 Damage detection in concrete structures with impedance data and machine learning Bulletin of the Polish Academy of Sciences Technical Sciences e149178 e149178 Search in Google Scholar

Moj, M., & Czarnecki, S. (2024). Comparative analysis of selected machine learning techniques for predicting the pull-off strength of the surface layer of eco-friendly concrete. Advances in Engineering Software, 195, 103710. MojM. CzarneckiS. 2024 Comparative analysis of selected machine learning techniques for predicting the pull-off strength of the surface layer of eco-friendly concrete Advances in Engineering Software 195 103710 Search in Google Scholar

Song H., Ahmad A., Farooq F., Ostrowski K., Maślak M., Czarnecki S., Aslam F., Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms, Construction and Building Materials, 2021. SongH. AhmadA. FarooqF. OstrowskiK. MaślakM. CzarneckiS. AslamF. Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms Construction and Building Materials 2021 Search in Google Scholar

Czarnecki S, Moj M. Comparative Analyses of Selected Neural Networks for Prediction of Sustainable Cementitious Composite Subsurface Tensile Strength. Applied Sciences. 2023, 13(8), 2023 CzarneckiS MojM Comparative Analyses of Selected Neural Networks for Prediction of Sustainable Cementitious Composite Subsurface Tensile Strength Applied Sciences 2023 13 8 2023 Search in Google Scholar

Noman, M., Khattak, A., Alam, Z., Yaqub, M., & Noroozinejad Farsangi, E. (2024). Predicting the Residual Compressive Strength of Concrete Exposed to Elevated Temperatures Using Interpretable Machine Learning. Practice Periodical on Structural Design and Construction, 29(4), 04024055. NomanM. KhattakA. AlamZ. YaqubM. Noroozinejad FarsangiE. 2024 Predicting the Residual Compressive Strength of Concrete Exposed to Elevated Temperatures Using Interpretable Machine Learning Practice Periodical on Structural Design and Construction 29 4 04024055 Search in Google Scholar

Shishegaran, A., Saeedi, M., Mirvalad, S., & Korayem, A. H. (2023). Computational predictions for estimating the performance of flexural and compressive strength of epoxy resin-based artificial stones. Engineering with Computers, 39(1), 347–372. ShishegaranA. SaeediM. MirvaladS. KorayemA. H. 2023 Computational predictions for estimating the performance of flexural and compressive strength of epoxy resin-based artificial stones Engineering with Computers 39 1 347 372 Search in Google Scholar

Deix, K., & Tutic, S. (2023). Determination of the slip resistance of interspersed synthetic resin flooring with a convolutional neural network. Journal of Building Engineering, 76, 106721. DeixK. TuticS. 2023 Determination of the slip resistance of interspersed synthetic resin flooring with a convolutional neural network Journal of Building Engineering 76 106721 Search in Google Scholar

Kampa, Ł., & Sadowski, Ł. (2023, July). The Effect of the Synergistic Application of Waste Granite Powder and Linen Fibers on the Adhesive Properties of Ecological Epoxy Coatings. In International Conference On Adhesive Bonding (pp. 53–81). Cham: Springer Nature Switzerland. KampaŁ. SadowskiŁ. 2023 July The Effect of the Synergistic Application of Waste Granite Powder and Linen Fibers on the Adhesive Properties of Ecological Epoxy Coatings In International Conference On Adhesive Bonding 53 81 Cham: Springer Nature Switzerland Search in Google Scholar

ASTM D4541-17. Standard Test Method for Pull-off Strength of Coatings Using Portable Adhesion Testers. ASTM International: West Conshohocken, PA, USA, 2017; 06.02; pp. 1–6. ASTM D4541-17 Standard Test Method for Pull-off Strength of Coatings Using Portable Adhesion Testers ASTM International West Conshohocken, PA, USA 2017; 06.02 1 6 Search in Google Scholar

Czarnecki, S., Sadowski, Ł., & Hoła, J. Evaluation of interlayer bonding in layered composites based on non-destructive measurements and machine learning: Comparative analysis of selected learning algorithms. Automation in Construction, 132, 103977. (2021) CzarneckiS. SadowskiŁ. HołaJ. Evaluation of interlayer bonding in layered composites based on non-destructive measurements and machine learning: Comparative analysis of selected learning algorithms Automation in Construction 132 103977 2021 Search in Google Scholar

Barkhordari, M. S., Armaghani, D. J., Mohammed, A. S., & Ulrikh, D. V. (2022). Data-driven compressive strength prediction of fly ash concrete using ensemble learner algorithms. Buildings, 12(2), 132. BarkhordariM. S. ArmaghaniD. J. MohammedA. S. UlrikhD. V. 2022 Data-driven compressive strength prediction of fly ash concrete using ensemble learner algorithms Buildings 12 2 132 Search in Google Scholar

Krzywiński, K., Sadowski, Ł., Fedoruk, K., & Sieradzki, A. (2023). Fundamental understanding of the thermal properties of amorphous epoxy resin coatings filled with quartz-feldspar powder sourced from quarry waste. Applied Surface Science, 614, 156133. KrzywińskiK. SadowskiŁ. FedorukK. SieradzkiA. 2023 Fundamental understanding of the thermal properties of amorphous epoxy resin coatings filled with quartz-feldspar powder sourced from quarry waste Applied Surface Science 614 156133 Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Geowissenschaften, Geowissenschaften, andere, Materialwissenschaft, Verbundwerkstoffe, Poröse Materialien, Physik, Mechanik und Fluiddynamik