Development of the modified clothoidal (MCL) shape of composite dowels against the background of fatigue and technological issues
und
08. Apr. 2024
Über diesen Artikel
Artikel-Kategorie: Original Study
Online veröffentlicht: 08. Apr. 2024
Seitenbereich: 91 - 110
Eingereicht: 28. Sept. 2023
Akzeptiert: 01. März 2024
DOI: https://doi.org/10.2478/sgem-2024-0005
Schlüsselwörter
© 2024 Wojciech Lorenc et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1:

Figure 2:
![Results of push-out tests conducted by UBWM [7]: force per dowel versus relative slip for the SA, PZ, and CL shapes (the horizontal axis shows the slip displacement measured in the tests).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a3e4e662f30ba53f8da/j_sgem-2024-0005_fig_002.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250911%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250911T050658Z&X-Amz-Expires=3600&X-Amz-Signature=064b2f6c3d30ab558b09cb69479486445119c83a38a478a9b730b6260721fb08&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 3:
![Cutting technology for production of test specimens for project [7]: a) and b) single cutting line for the PZ and SA shapes and c) two cutting lines for the CL shape.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a3e4e662f30ba53f8da/j_sgem-2024-0005_fig_003.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250911%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250911T050658Z&X-Amz-Expires=3600&X-Amz-Signature=e5e812d4e3cdd39ef3d85da16448fe10c2b38cbc9b1b22fc5fe9ade0a5e73575&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 4:
![The idea of the new push-out-test (NPOT) specimen proposed by the author to be used for cyclic tests [7] (2 million cycles).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a3e4e662f30ba53f8da/j_sgem-2024-0005_fig_004.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250911%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250911T050658Z&X-Amz-Expires=3600&X-Amz-Signature=2e2ad80a62e97103af4b4ebca796b41bb2cbfacff0e695d6fa6b784041913ebd&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:
![Documentation of fatigue cracks in the NPOT-PZ2 specimen tested in of the PreCo-Beam project [7]: a–f) view after cutting the concrete part, g) general view of the crack, h) beginning of the crack, and i) end of the crack](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a3e4e662f30ba53f8da/j_sgem-2024-0005_fig_010.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250911%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250911T050658Z&X-Amz-Expires=3600&X-Amz-Signature=32ec8ff2b8a07d4546f67890b25db1927195c9c6e9fe55e45d51cc02e309eb97&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 11:
![The original concept of dimensionless resistance of steel dowels regarding local and global effects [5,6] (Fig. 13d in [6]): fatigue coefficients for tension stress for PZ shape (at the left; to be compared with Fig. 20 and [22] for the clothoidal shape) and general prediction for complete stress set (at the right).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a3e4e662f30ba53f8da/j_sgem-2024-0005_fig_011.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250911%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250911T050658Z&X-Amz-Expires=3600&X-Amz-Signature=e4f2ace074e068ecc7087e94a25baf987eb43bd59bc5e2f4059fdf42c0b29172&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 12:
![Strain gauges on NPOT specimens with CL shapes for purposes of [7].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a3e4e662f30ba53f8da/j_sgem-2024-0005_fig_012.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250911%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250911T050658Z&X-Amz-Expires=3600&X-Amz-Signature=785479133c0415dc5ff04f5b5f10d2e71d67e5e937c0b484e1fe89614d4618a2&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 13:

Figure 14:
![Summary of characteristics of the basic shapes highlighting the problems with the idea of a new cutting line and the basis standing behind this idea (original drawing of steel parts of NPOT specimens for discussions with partners of the PreCo-Beam [7] project: only the SA and PZ shapes were used in bridges before construction of the “Wierna Rzeka” Bridge in Poland [62]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a3e4e662f30ba53f8da/j_sgem-2024-0005_fig_014.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250911%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250911T050658Z&X-Amz-Expires=3600&X-Amz-Signature=94e046c928b2559de812c4314cc02a15a764dc1e1623ddf4ae70c667902451c2&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 15:

Figure 16:

Figure 17:

Figure 18:

Figure 19:
![Results of the numerical simulations of the MCL 115/250 shape (the shape after optimization of the ratio according to the procedure presented in Fig. 30 in [57]) by Abaqus software.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a3e4e662f30ba53f8da/j_sgem-2024-0005_fig_019.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250911%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250911T050658Z&X-Amz-Expires=3600&X-Amz-Signature=0e56aeb1fb4ca7ef3946688521d588458886358af8ca0b914c7cf8153e5f93ae&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 20:
![Dimensionless stress concentration factors (according to [5,6]) for the MCL 115/250 shape and the PZ 300/100 shape.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a3e4e662f30ba53f8da/j_sgem-2024-0005_fig_020.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250911%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250911T050658Z&X-Amz-Expires=3600&X-Amz-Signature=297b284d657e5031456ab763e4997b52e91ac9f0b1fac326942ba9bca4fd7905&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 21:

Figure 22:
![Different shapes and technologies of production of steel dowels with the clothoidal shape: a and b) different shapes of the “nose” of steel dowels by different producers fabricated in Poland out of plates by oxy-cutting, c) small dowels fabricated in Luxembourg by plasma cutting, d) elements of the PE4 bridge design by the author in Poland [12] fabricated in Luxembourg by oxy-cutting and plasma cutting, and e) steel elements of the PE4 bridge at the construction site (a large number of elements were produced with the MCL 115/250 shape).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a3e4e662f30ba53f8da/j_sgem-2024-0005_fig_022.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250911%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250911T050658Z&X-Amz-Expires=3600&X-Amz-Signature=a0185c4b73c169675d395cdc7427bf31f687c812abce6af65e934a3be7dd30fd&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 23:

Figure 24:

Figure 25:
![Implementation of composite dowels in innovative composite bridges in Poland: a) and b) implementation in beams – bridge in Elbląg (presented in [41]) and c) implementation in arches – a new solution as part of a network arch bridge using composite dowels [63].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a3e4e662f30ba53f8da/j_sgem-2024-0005_fig_025.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250911%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250911T050658Z&X-Amz-Expires=3600&X-Amz-Signature=15130a0592f2e56da52205a97115eaec16abd7be185d1cbfc796573f8a892b29&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 26:
![Nominal geometry of the modified clothoidal shape of a single connector MCL 100/250 according to [16] given as a function of the spacing of connectors ex.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a3e4e662f30ba53f8da/j_sgem-2024-0005_fig_026.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250911%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250911T050658Z&X-Amz-Expires=3600&X-Amz-Signature=a642cf882bd83525430d0f44c0870af50df893a9746384805c7bca3814188089&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Main stress values (MPa) in the NPOT models estimated using FEA for coarse mesh density – the stress level is given at the minimum (σP = 120 kN) and maximum (σP = 280 kN) load level and their difference (ΔσP = 160 kN)_
CL | 132.0 | 176.0 | 308.0 |
SA | 134.6 | 179.4 | 314.0 |
PZ | 157.6 | 210.2 | 367.8 |