Uneingeschränkter Zugang

3D DEM simulations of basic geotechnical tests with early detection of shear localization


Zitieren

Wu W., 1992, Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer Stoffe, Heft 129, Institute for Soil- and Rock-Mechanics, University of Karlsruhe.WuW.1992Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer StoffeHeft 129, Institute for Soil- and Rock-Mechanics, University of KarlsruheSearch in Google Scholar

de Borst R., Műhlhaus H.B., 1992, Gradient dependent plasticity: formulation and algorithmic aspects, Int. J. Numer. Methods Eng. 35, 521–539.de BorstR.MűhlhausH.B.1992Gradient dependent plasticity: formulation and algorithmic aspectsInt. J. Numer. Methods Eng.3552153910.1002/nme.1620350307Search in Google Scholar

Tejchman J., Wu W., 1993, Numerical study on shear band patterning in a Cosserat continuum, Acta Mech. 99, 61–74.TejchmanJ.WuW.1993Numerical study on shear band patterning in a Cosserat continuumActa Mech.99617410.1007/BF01177235Search in Google Scholar

Brinkgreve R., 1994, Geomaterial models and numerical analysis of softening, Dissertation, Delft University, 1–153.BrinkgreveR.1994Geomaterial models and numerical analysis of softeningDissertation,Delft University1153Search in Google Scholar

Tejchman J., Herle I., Wehr J., 1999, FE-studies on the influence of initial density, pressure level and mean grain diameter on shear localisation, Int. J. Numer. Anal. Methods Geomech 23(15), 2045–2074.TejchmanJ.HerleI.WehrJ.1999FE-studies on the influence of initial density, pressure level and mean grain diameter on shear localisationInt. J. Numer. Anal. Methods Geomech23152045207410.1002/(SICI)1096-9853(19991225)23:15<2045::AID-NAG48>3.0.CO;2-BSearch in Google Scholar

Tejchman J., 2004, Influence of a characteristic length on shear zone formation in hypoplasticity with different enhancements, Comput. Geotech. 31(8), 595–611.TejchmanJ.2004Influence of a characteristic length on shear zone formation in hypoplasticity with different enhancementsComput. Geotech.31859561110.1016/j.compgeo.2004.10.001Search in Google Scholar

Tejchman J., Wu W., 2009, Non-coaxiality and stress-dilatancy rule in granular materials: FE investigation within micro-polar hypoplasticity, Int. J. Numer. Anal. Methods Geomech 33(1), 117–142.TejchmanJ.WuW.2009Non-coaxiality and stress-dilatancy rule in granular materials: FE investigation within micro-polar hypoplasticityInt. J. Numer. Anal. Methods Geomech33111714210.1002/nag.715Search in Google Scholar

Tejchman J., Górski J., 2010, FE study of patterns of shear zones in granular bodies during plane strain compression, Acta Geotechnica 5(2), 95–112.TejchmanJ.GórskiJ.2010FE study of patterns of shear zones in granular bodies during plane strain compressionActa Geotechnica529511210.1007/s11440-009-0103-6Search in Google Scholar

Regueiro R.A., Borja R.I., 2001, Plane strain finite element analysis of pressure sensitive plasticity with strong discontinuity, Int. J. Solids Struct. 38(21), 3647–3672.RegueiroR.A.BorjaR.I.2001Plane strain finite element analysis of pressure sensitive plasticity with strong discontinuityInt. J. Solids Struct.38213647367210.1016/S0020-7683(00)00250-XSearch in Google Scholar

Bobinski J., Tejchman J., 2014, Simulations of shear zones and cracks in engineering materials using eXtended Finite Element Method, I. J. Num. Anal. Meth. Geom., 1–6.BobinskiJ.TejchmanJ.2014Simulations of shear zones and cracks in engineering materials using eXtended Finite Element MethodI. J. Num. Anal. Meth. Geom.1610.1007/978-3-319-13506-9_1Search in Google Scholar

Oda M., Kazama H., 1998, Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils, Geotechnique 48, 465–481.OdaM.KazamaH.1998Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soilsGeotechnique4846548110.1680/geot.1998.48.4.465Search in Google Scholar

Ord A., Hobbs B., Regenauer-Lieb K., 2007, Shear band emergence in granular materials- a numerical study, Int. J. Numer. Anal. Methods Geomech. 31, 373–393.OrdA.HobbsB.Regenauer-LiebK.2007Shear band emergence in granular materials- a numerical studyInt. J. Numer. Anal. Methods Geomech.3137339310.1002/nag.590Search in Google Scholar

Pena A.A., Garcia-Rojo R., Herrmann H.J., 2007, Influence of particle shape on sheared dense granular media, Granular Matter 3(4), 279–292.PenaA.A.Garcia-RojoR.HerrmannH.J.2007Influence of particle shape on sheared dense granular mediaGranular Matter3427929210.1007/s10035-007-0038-2Search in Google Scholar

Bi Z., Sun Q., Jin F., Zhang M., 2011, Numerical study on energy transformation in granular matter under biaxial compression, Granular Matter 13, 503–510.BiZ.SunQ.JinF.ZhangM.2011Numerical study on energy transformation in granular matter under biaxial compressionGranular Matter1350351010.1007/s10035-011-0262-7Search in Google Scholar

Pardoen B., Collin F., 2017, Modelling the influence of strain localisation and viscosity on the behaviour of underground drifts drilled in claystone, Computers and Geotechnics 85,351–367.PardoenB.CollinF.2017Modelling the influence of strain localisation and viscosity on the behaviour of underground drifts drilled in claystoneComputers and Geotechnics8535136710.1016/j.compgeo.2016.05.017Search in Google Scholar

Conte E., Donato A., Troncone A., 2013, Progressive failure analysis of shallow foundations on soils with strain-softening behaviour, Computers and Geotechnics 54, 117–124.ConteE.DonatoA.TronconeA.2013Progressive failure analysis of shallow foundations on soils with strain-softening behaviourComputers and Geotechnics5411712410.1016/j.compgeo.2013.07.002Search in Google Scholar

Kozicki J., Niedostatkiewicz M., Tejchman J., Mühlhaus H.-B., 2013, Discrete modelling results of a direct shear test for granular materials versus FE results, Granular Matter 15(5), 607–627.KozickiJ.NiedostatkiewiczM.TejchmanJ.MühlhausH.-B.2013Discrete modelling results of a direct shear test for granular materials versus FE resultsGranular Matter15560762710.1007/s10035-013-0423-ySearch in Google Scholar

Zhang N., Evans T.M., 2018, Three dimensional discrete element method simulations of interface shear, Soils and Foundations 58(4), 941–956.ZhangN.EvansT.M.2018Three dimensional discrete element method simulations of interface shearSoils and Foundations58494195610.1016/j.sandf.2018.05.010Search in Google Scholar

Xue-Ying J., Wan-Huan Z., Yangmin L., 2017, Interface direct shearing behavior between soil and saw-tooth surfaces by DEM simulation, Procedia Engineering 175, 36–42.Xue-YingJ.Wan-HuanZ.YangminL.2017Interface direct shearing behavior between soil and saw-tooth surfaces by DEM simulationProcedia Engineering175364210.1016/j.proeng.2017.01.011Search in Google Scholar

Cui L., O’Sullivan C., 2006, Exploring the macro- and micro-scale response of an idealised granular material in the direct shear apparatus, Géotechnique 56.CuiL.O’SullivanC.2006Exploring the macro- and micro-scale response of an idealised granular material in the direct shear apparatusGéotechnique5610.1680/geot.2006.56.7.455Search in Google Scholar

Salazar A., Sáez E., Pardo G., 2015, Modeling the direct shear test of a coarse sand using the 3D Discrete Element Method with a rolling friction model, Computers and Geotechnics 67, 83–93.SalazarA.SáezE.PardoG.2015Modeling the direct shear test of a coarse sand using the 3D Discrete Element Method with a rolling friction modelComputers and Geotechnics67839310.1016/j.compgeo.2015.02.017Search in Google Scholar

Bernhardt M. L., Biscontin G., O’Sullivan C., 2016, Experimental validation study of 3D direct simple shear DEM simulations, Soils and Foundations 56, 336–347.BernhardtM. L.BiscontinG.O’SullivanC.2016Experimental validation study of 3D direct simple shear DEM simulationsSoils and Foundations5633634710.1016/j.sandf.2016.04.002Search in Google Scholar

Rojek J., 2007, Discrete element modelling of rock cutting, Computer Methods in Materials Science 7(2), 224–230.RojekJ.2007Discrete element modelling of rock cuttingComputer Methods in Materials Science7222423010.1007/978-94-007-0735-1_10Search in Google Scholar

Nitka M., Combe G., Dascalu C., Desrues J., 2011, Two-scale modeling of granular materials: a DEM-FEM approach, Granular Matter 13, 277–281.NitkaM.CombeG.DascaluC.DesruesJ.2011Two-scale modeling of granular materials: a DEM-FEM approachGranular Matter1327728110.1007/s10035-011-0255-6Search in Google Scholar

Utter B., Behringer R.P., 2004, Self-diffusion in dense granular shear flows, Phys. Rev. E. 69(3), 031308-1–031308-12.UtterB.BehringerR.P.2004Self-diffusion in dense granular shear flowsPhys. Rev. E.693031308-1031308-1210.1103/PhysRevE.69.031308Search in Google Scholar

Abedi S., Rechenmacher A.L., Orlando A.D., 2012, Vortex formation and dissolution in sheared sands. Granular Matter 14, 695–705.AbediS.RechenmacherA.L.OrlandoA.D.2012Vortex formation and dissolution in sheared sandsGranular Matter1469570510.1007/s10035-012-0369-5Search in Google Scholar

Richefeu V., Combe G., Viggiani G., 2012, An experimental assessment of displacement fluctuations in a 2D granular material subjected to shear, Geotechnique Letters 2, 113–118.RichefeuV.CombeG.ViggianiG.2012An experimental assessment of displacement fluctuations in a 2D granular material subjected to shearGeotechnique Letters211311810.1680/geolett.12.00029Search in Google Scholar

Radjai F., Roux S., 2002, Turbulent-like fluctuation in quasi-static flow of granular media. Phys. Rev. Lett. 89, 064302.RadjaiF.RouxS.2002Turbulent-like fluctuation in quasi-static flow of granular mediaPhys. Rev. Lett.8906430210.1103/PhysRevLett.89.064302Search in Google Scholar

Williams J.R., Rege N., 1997, Coherent vortex structures in deforming granular materials. Mechanics of Cohesive-frictional Materials 2, 223–236.WilliamsJ.R.RegeN.1997Coherent vortex structures in deforming granular materialsMechanics of Cohesive-frictional Materials222323610.1002/(SICI)1099-1484(199707)2:3<223::AID-CFM30>3.0.CO;2-FSearch in Google Scholar

Kuhn M.R., 1999 Structured deformation in granular materials, Mechanics of Materials 31, 407–442.KuhnM.R.1999Structured deformation in granular materialsMechanics of Materials3140744210.1016/S0167-6636(99)00010-1Search in Google Scholar

Alonso-Marroquin F., Vardoulakis I., Herrmann H., Weatherley D., Mora P., 2006, Effect of rolling on dissipation in fault gouges, Physical Review E., 74 031306.Alonso-MarroquinF.VardoulakisI.HerrmannH.WeatherleyD.MoraP.2006Effect of rolling on dissipation in fault gougesPhysical Review E.7403130610.1103/PhysRevE.74.031306Search in Google Scholar

Tordesillas A., Muthuswamy M., Walsh S.D.C., 2008, Mesoscale measures of nonaffine deformation in dense granular assemblies, Journal of Engineering Mechanics 134(12), 1095–1113.TordesillasA.MuthuswamyM.WalshS.D.C.2008Mesoscale measures of nonaffine deformation in dense granular assembliesJournal of Engineering Mechanics134121095111310.1061/(ASCE)0733-9399(2008)134:12(1095)Search in Google Scholar

Liu X., Papon A., Mühlhaus H.B., 2012, Numerical study of structural evolution in shear band, Philosophical Magazine 92(28–30), 3501–3519.LiuX.PaponA.MühlhausH.B.2012Numerical study of structural evolution in shear bandPhilosophical Magazine9228–303501351910.1080/14786435.2012.715249Search in Google Scholar

Peters J.F., Walizer L.E., 2013, Patterned nonaffine motion in granular media, Journal of Engineering Mechanics 139(10), 1479–1490.PetersJ.F.WalizerL.E.2013Patterned nonaffine motion in granular mediaJournal of Engineering Mechanics139101479149010.1061/(ASCE)EM.1943-7889.0000556Search in Google Scholar

Ahuja R. K., Magnanti T. L., Orlin J. B., 1993, Network flows : theory, algorithms, and applications, Englewood Cliffs, N.J. Prentice Hall.AhujaR. K.MagnantiT. L.OrlinJ. B.1993Network flows : theory, algorithms, and applicationsEnglewood Cliffs, N.J.Prentice HallSearch in Google Scholar

Tordesillas, A., Kahagalage, S., Ras, C., Nitka, M., Tejchman, J., 2018, Interdependent evolution of robustness, force transmission and damage in a heterogeneous quasi-brittle granular material: from suppressed to cascading failure, arXiv preprint arXiv:1809.01491.TordesillasA.KahagalageS.RasC.NitkaM.TejchmanJ.2018Interdependent evolution of robustness, force transmission and damage in a heterogeneous quasi-brittle granular material: from suppressed to cascading failurearXiv preprint arXiv:1809.01491.Search in Google Scholar

Thornton C., Yin K. K., Adams M. J., 1996, Numerical simulation of the impact fracture and fragmentation of agglomerates, J. Phys., 29, 424–435.ThorntonC.YinK. K.AdamsM. J.1996Numerical simulation of the impact fracture and fragmentation of agglomeratesJ. Phys.2942443510.1088/0022-3727/29/2/021Search in Google Scholar

Herrmann H. J., Luding S., 1998, Modeling granular media on the computer, Continuum Mech. Therm. 4 (10), 189–231.HerrmannH. J.LudingS.1998Modeling granular media on the computerContinuum Mech. Therm.41018923110.1007/s001610050089Search in Google Scholar

Jiang M. J., Yu H.-S., Harris D., 2005, A novel discrete model for granular material incorporating rolling resistance, Computers and Geotechnics 32, 340–357.JiangM. J.YuH.-S.HarrisD.2005A novel discrete model for granular material incorporating rolling resistanceComputers and Geotechnics3234035710.1016/j.compgeo.2005.05.001Search in Google Scholar

Kruyt N. P., Rothenburg L., 2006, Shear strength, dilatancy, energy and dissipation in quasi-static deformation of granular materials, JSTAT/2006/P07021.KruytN. P.RothenburgL.2006Shear strength, dilatancy, energy and dissipation in quasi-static deformation of granular materialsJSTAT/2006/P07021.10.1088/1742-5468/2006/07/P07021Search in Google Scholar

Zhu H. P., Zhou Z. Y., Yang R. Y., Yu A. B., 2007,Discrete particle simulation of particulate systems: Theoretical developments, Chem. Eng. Sci. 62, 3378–3396.ZhuH. P.ZhouZ. Y.YangR. Y.YuA. B.2007Discrete particle simulation of particulate systems: Theoretical developmentsChem. Eng. Sci.623378339610.1016/j.ces.2006.12.089Search in Google Scholar

Ketterhagen W. R., Amende M. T., Hancock B. C., 2008, Process modeling in the pharmaceutical industry using the discrete element method, Pharmaceutical Research and Development, DOI 10.1002/jps.21466.KetterhagenW. R.AmendeM. T.HancockB. C.2008Process modeling in the pharmaceutical industry using the discrete element methodPharmaceutical Research and Development10.1002/jps.2146618563797Open DOISearch in Google Scholar

Nitka M., Tejchman J., Kozicki J., Leśniewska D., 2015, DEM analysis of micro-structural events within granular shear zones under passive earth pressure conditions, Granular Matter 3, 325–343.NitkaM.TejchmanJ.KozickiJ.LeśniewskaD.2015DEM analysis of micro-structural events within granular shear zones under passive earth pressure conditionsGranular Matter332534310.1007/s10035-015-0558-0Search in Google Scholar

Cundall P. A., Hart R., 1992, Numerical modeling of discontinua, J. Eng. Comp. 9, 101–113.CundallP. A.HartR.1992Numerical modeling of discontinuaJ. Eng. Comp.910111310.1016/B978-0-08-040615-2.50015-0Search in Google Scholar

Danesh A., Asghar Mirghasemi A., Palassi M., 2020, Evaluation of particle shape on direct shear mechanical behavior of ballast assembly using discrete element method (DEM), Transportation Geotechnics 23.DaneshA.Asghar MirghasemiA.PalassiM.2020Evaluation of particle shape on direct shear mechanical behavior of ballast assembly using discrete element method (DEM)Transportation Geotechnics2310.1016/j.trgeo.2020.100357Search in Google Scholar

Szarf K., Combe G.,Villard P., 2009, Influence of the grains shape on the mechanical behavior of granular materials, AIP Conference Proceedings 1145(1), 357–360SzarfK.CombeG.VillardP.2009Influence of the grains shape on the mechanical behavior of granular materialsAIP Conference Proceedings1145135736010.1063/1.3179932Search in Google Scholar

Zhao S., Zhao J., 2019, A poly-superellipsoid-based approach on particle morphology for DEM modeling of granular media, Int J Numer Anal Methods Geomech, 1–13.ZhaoS.ZhaoJ.2019A poly-superellipsoid-based approach on particle morphology for DEM modeling of granular mediaInt J Numer Anal Methods Geomech11310.1002/nag.2951Search in Google Scholar

Kozicki J., Donze, F.V., 2008, A new open-source software developed for numerical simulations using discrete modelling methods, Computer Methods in Applied Mechanics and Engineering 197, 4429–4443.KozickiJ.DonzeF.V.2008A new open-source software developed for numerical simulations using discrete modelling methodsComputer Methods in Applied Mechanics and Engineering1974429444310.1016/j.cma.2008.05.023Search in Google Scholar

Šmilauer V., Chareyre B., 2011, Yade DEM Formulation, Manual.ŠmilauerV.ChareyreB.2011Yade DEM FormulationManual.Search in Google Scholar

Zhao S., Evans T.M., Zhou X., 2018, Effects of curvature-related DEM contact model on the macro- and micro-mechanical behaviours of granular soils, Géotechnique 68 (12), 1085–1098.ZhaoS.EvansT.M.ZhouX.2018Effects of curvature-related DEM contact model on the macro- and micro-mechanical behaviours of granular soilsGéotechnique68121085109810.1680/jgeot.17.P.158Search in Google Scholar

Zhao S., Evans T.M., Zhou X., 2018, Shear-induced anisotropy of granular materials with rolling resistance and particle shape effects, International Journal of Solids and Structures 150 (1), 268–281.ZhaoS.EvansT.M.ZhouX.2018Shear-induced anisotropy of granular materials with rolling resistance and particle shape effectsInternational Journal of Solids and Structures150126828110.1016/j.ijsolstr.2018.06.024Search in Google Scholar

Zhao, S., Evans, T. M., Zhou, X., 2018b., Three-dimensional voronoi analysis of monodisperse ellipsoids during triaxial shear, Powder Technology 323, 323–336.ZhaoS.EvansT. M.ZhouX.2018bThree-dimensional voronoi analysis of monodisperse ellipsoids during triaxial shearPowder Technology32332333610.1016/j.powtec.2017.10.023Search in Google Scholar

Cundall P.A., Strack, O.D.L., 1979, A discrete numerical model for granular assemblies, Geotechnique 29, 47–65.CundallP.A.StrackO.D.L.1979A discrete numerical model for granular assembliesGeotechnique29476510.1680/geot.1979.29.1.47Search in Google Scholar

Widuliński L, Kozicki J, Tejchman J., 2009, Numerical simulations of triaxial test with sand using DEM, Archives of Hydro-Engineering and Environmental Mechanics 56, 3–26.WidulińskiLKozickiJTejchmanJ.2009Numerical simulations of triaxial test with sand using DEMArchives of Hydro-Engineering and Environmental Mechanics56326Search in Google Scholar

Skarżyński Ł., Kozicki J., Tejchman J., 2013, Application of DIC technique to concrete - study on objectivity of measured surface displacements, Experimental Mechanics, 53(9), 1545–1559.SkarżyńskiŁ.KozickiJ.TejchmanJ.2013Application of DIC technique to concrete - study on objectivity of measured surface displacementsExperimental Mechanics5391545155910.1007/s11340-013-9781-ySearch in Google Scholar

Leśniewska D., Nitka M., Tejchman J., Pietrzak M., 2020, Contact force network evolution in active earth pressure state of granular materials: photo-elastic tests and DEM, Granular Matter, 22–71.LeśniewskaD.NitkaM.TejchmanJ.PietrzakM.2020Contact force network evolution in active earth pressure state of granular materials: photo-elastic tests and DEMGranular Matter227110.1007/s10035-020-01033-xSearch in Google Scholar

eISSN:
2083-831X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Geowissenschaften, andere, Materialwissenschaft, Verbundwerkstoffe, Poröse Materialien, Physik, Mechanik und Fluiddynamik