Uneingeschränkter Zugang

Patterns of genetic variation and the potential origin of sweet chestnut (Castanea sativa Mill.) stands far from its natural northern distribution edge


Zitieren

Alcaide F, Solla A, Mattioni C, Castellana S, Martín MÀ (2019) Adaptive diversity and drought tolerance in Castanea sativa assessed through EST-SSR genic markers. Forestry 92(3): 287–296. https://doi.org/10.1093/forestry/cpz007 Search in Google Scholar

Alessandri S, Cabrer AMR, Martín MÁ, Mattioni C, Pereira-Lorenzo S, Dondini L (2022) Genetic characterization of Italian and Spanish wild and domesticated chestnut trees. Scientia Horticulturae 295: 1–28. https://doi.org/10.1016/j.scienta.2022.110882 Search in Google Scholar

Barrandeguy ME, García MV (2021) The sensitiveness of expected heterozygosity and allelic richness estimates for analyzing population genetic diversity. In: Trindade MR and CM de Araújo (eds) Genetic Variation. IntechOpen, ISBN 978-1-83881-097-9. https://doi.org/10.5772/intechopen.95585 Search in Google Scholar

Bouffartigue C, Debille S, Fabreguettes O, Cabrer AR, Pereira-Lorenzo S, Flutre T,L Harvengt L (2020) Two main genetic clusters with high admixture between forest and cultivated chestnut (Castanea sativa Mill.) in France. Annals of Forest Science. Annals of Forest Science 77(3). https://doi.org/10.1007/s13595-020-00982-w Search in Google Scholar

Buck EJ, Hadonou M, James CJ, Blakesley D, Russell K (2003) Isolation and characterization of polymorphic microsatellites in European chestnut (Castanea sativa Mill.). Molecular Ecology Notes 3(2): 239–241. https://doi.org/10.1046/j.1471-8286.2003.00410.x Search in Google Scholar

Castellana S, Martín MÀ, Solla A, Alcaide F, Villani F, Cherubini M, Neale D, Mattioni C (2021) Signatures of local adaptation to climate in natural populations of sweet chestnut (Castanea sativa Mill.) from southern Europe. Annals of Forest Science 78(2). https://doi.org/10.1007/s13595-021-01027-6 Search in Google Scholar

Caudullo G, Welk E, San-Miguel-Ayanz J (2017) Chorological maps for the main European woody species. Data in Brief 12: 662-666. https://doi.org/10.1016/j.dib.2017.05.007 Search in Google Scholar

Chen Z, Grossfurthner L, Loxterman JL, Masingale J, Richardson BA, Seaborn T, Smith B, Waits LP, Narum SR (2022) Applying genomics in assisted migration under climate change: Framework, empirical applications, and case studies. Evolutionary Applications 15(1): 3–21. https://doi.org/10.1111/eva.13335 Search in Google Scholar

Chiocchini F, Mattioni C, Pollegioni P, Lusini I, Martín MÀ, Cherubini M, Lauteri M, Villani F (2016) Mapping the genetic diversity of Castanea sativa: exploiting spatial analysis for biogeography and conservation studies. Journal of Geographic Information System 08:248–259. Search in Google Scholar

Conedera M, Manetti MC, Giudici F, Amorini E (2004) Distribution and economic potential of the sweet chestnut (Castanea sativa Mill.) in Europe. Ecologia mediterranea 30(2): 179–193. https://doi.org/10.3406/ecmed.2004.1458 Search in Google Scholar

Conedera M, Tinner W, Krebs P, de Rigo D, Caudullo G (2016) Castanea sativa in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, D de Rigo, G Caudullo, T Houston Durrant and A Mauri (eds.), European atlas of forest tree species. Publications Office of the European Union, Luxembourg, pp. 78-79 ISBN 978-92-76-17290-1 Search in Google Scholar

Durand J, Bodénès C, Chancerel E, Frigerio JM, Vendramin G, Sebastiani F, Buonamici A, Gailing O, Koelewijn HP, Villani F, Mattioni C, Cherubini M, Goicoechea PG, Herrán A, Ikaran Z, Cabané C, Ueno S, Alberto F, Dumoulin PY, Guichoux E, de Daruvar A, Kremer A, Plomion C (2010) A fast and cost-effective approach to develop and map EST-SSR markers: Oak as a case study. BMC Genomics 11(1). https://doi.org/10.1186/1471-2164-11-570 Search in Google Scholar

Faust K, Fussi B (2009) Genetik und Vermehrungsgut der Esskastanie. LWF Wissen 81: 14–19 Search in Google Scholar

Fernández-Cruz J, Fernández-López J (2012) Morphological, molecular and statistical tools to identify Castanea species and their hybrids. Conservation Genetics 13(6): 1589–1600. https://doi.org/10.1007/s10592-012-0408-0 Search in Google Scholar

Goudet J, Jombart T (2015) hierfstat: Estimation and tests of hierarchical F-statistics. R package version 0.04-22. R package version 0.04-22 Search in Google Scholar

Hartig F (2022) DHARMa: Residual diagnostics for hierarchical (multi-Level/mixed) regression models. R package version 0.4.6. https://CRAN.R-project.org/package=DHARMa Search in Google Scholar

Hosius B, Leinemann L, Konnert M, Bergmann F (2006) Genetic aspects of forestry in the central Europe. European Journal of Forest Research 125(4): 407–417. https://doi.org/10.1007/s10342-006-0136-4 Search in Google Scholar

Huntley B, Birks HJB (1983) An atlas of past and present pollen maps for Europe: 0-13000 Years Ago Cambridge University Press Search in Google Scholar

Janfaza S, Yousefzadeh H, Hosseini Nasr SM, Botta R, Asadi Abkenar A, Marinoni DT (2017) Genetic diversity of castanea sativa an endangered species in the hyrcanian forest. Silva Fennica 51(1): 1–15. https://doi.org/10.14214/sf.1705 Search in Google Scholar

Kamvar ZN, Brooks JC, Grünwald NJ (2015a) Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front Genet 6: 1–10. https://doi.org/10.3389/fgene.2015.00208. Search in Google Scholar

Kamvar ZN, Tabima JF, Brooks JC, Grunwald NJ (2015b) Genetic analysis of populations with mixed reproduction Package ‘ poppr ’. Search in Google Scholar

Kim JS, Kim KA, Oh TR, Park CM, Kang H (2008) Functional characterization of DEAD-Box RNA helicases in Arabidopsis thaliana under abiotic stress conditions. Plant and Cell Physiology 49(10): 1563–1571. https://doi.org/10.1093/pcp/pcn125 Search in Google Scholar

Kleber A, Reiter P, Ehrhart H-P, Matthes U (2020) Steckbriefe Ergänzende Baumarten. FAWF/RLP Kompetenzzentrum für Klimawandelfolgen. https://www.klimawandel-rlp.de/fileadmin/website/klimakompetenzzentrum/Klimawandelinformationssystem/Handlungsfelder/Wald/Ergaenzende_Baumarten/CASA_Steckbrief.pdf. Search in Google Scholar

Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clump-ak: A program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources 15(5): 1179–1191. https://doi.org/10.1111/1755-0998.12387 Search in Google Scholar

Krebs P, Pezzatti GB, Beffa G, Tinner W, Conedera M (2019) Revising the sweet chestnut (Castanea sativa Mill.) refugia history of the last glacial period with extended pollen and macrofossil evidence. Quaternary Science Reviews 206: 111–128. https://doi.org/10.1016/j.quascirev.2019.01.002 Search in Google Scholar

Li YL, Liu JX (2018) StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Molecular Ecology Resources 18(1): 176–177. https://doi.org/10.1111/1755-0998.12719 Search in Google Scholar

Lusini I, Velichkov I, Pollegioni P, Chiocchini F, Hinkov G, Zlatanov T, Cherubini M, Mattioni C (2014) Estimating the genetic diversity and spatial structure of Bulgarian Castanea sativa populations by SSRs: Implications for conservation. Conservation Genetics 15(2): 283–293. https://doi.org/10.1007/s10592-013-0537-0 Search in Google Scholar

Macovei A, Vaid N, Tula S, Tuteja N (2012) A new DEAD-box helicase ATP-binding protein (OsABP) from rice is responsive to abiotic stress. Plant Signaling and Behavior 7(9): 1138–1143. https://doi.org/10.4161/psb.21343 Search in Google Scholar

Marinoni D, Akkak A, Bounous G, Edwards KJ, Botta R (2003) Development and characterization of microsatellite markers in Castanea sativa (Mill.). Molecular Breeding 11(2): 127–136. https://doi.org/10.1023/A:1022456013692 Search in Google Scholar

Martin MA, Mattioni C, Cherubini M, Taurchini D, Villani F (2010) Genetic diversity in European chestnut populations by means of genomic and genic microsatellite markers. Tree Genetics and Genomes 6(5): 735–744. https://doi.org/10.1007/s11295-010-0287-9 Search in Google Scholar

Mattioni C, Martin MÀ, Pollegioni R, Cherubini M, Villani F (2013) Microsatellite markers reveal a strong geographical structure in European populations of Castanea sativa (Fagaceae): Evidence for multiple glacial refugia. American Journal of Botany 100(5): 951–961. https://doi.org/10.3732/ajb.1200194 Search in Google Scholar

Mattioni C, Martin MÀ, Chiocchini F, Cherubini M, Gaudet M, Pollegioni P, Velichkov I, Jarman R, Chambers FM, Paule L, Damian VL, Crainic GC, Villani F (2017) Landscape genetics structure of European sweet chestnut (Castanea sativa Mill): indications for conservation priorities. Tree Genetics & Genomes 13(2): 39. https://doi.org/10.1007/s11295-017-1123-2 Search in Google Scholar

Mattioni C, Ranzino L, Cherubini M, Leonardi L, La Mantia T, Castellana S, Villani F, Simeone MC (2020) Monuments unveiled: Genetic characterization of large old chestnut (Castanea sativa Mill.) trees using comparative nuclear and chloroplast DNA analysis. Forests 11(10): 1–20. https://doi.org/10.3390/f11101118 Search in Google Scholar

Peakall R, Smouse PE (2012) GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28(19): 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 Search in Google Scholar

Pereira-Lorenzo S, Ramos-Cabrer AM, Barreneche T, Mattioni C, Villani F, Díaz-Hernández MB, Martín LM, Martín À (2017) Database of European chestnut cultivars and definition of a core collection using simple sequence repeats. Tree Genetics & Genomes 13(5). https://doi.org/10.1007/s11295-017-1197-x Search in Google Scholar

Pettenkofer T, Finkeldey R, Müller M, Krutovsky KV, Vornam B, Leinemann L, Gailing O (2020) Genetic variation of introduced red oak (Quercus rubra) stands in Germany compared to North American populations. European Journal of Forest Research 139(2): 321–331. https://doi.org/10.1007/s10342-019-01256-5 Search in Google Scholar

Poljak I, Idžojtić M, Šatović Z et al. (2017) Genetic diversity of the sweet chestnut (Castanea sativa Mill.) in Central Europe and the western part of the Balkan Peninsula and evidence of marron genotype introgression into wild populations. Tree Genetics & Genomes 13, 18 https://doi.org/10.1007/s11295-017-1107-2 Search in Google Scholar

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959. https://doi.org/10.1111/j.1471-8286.2007.01758.x Search in Google Scholar

Puechmaille SJ (2016) The program STRUCTUR does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Molecular Ecology Resources 16(3): 608–627. https://doi.org/10.1111/1755-0998.12512 Search in Google Scholar

R Core Team (2021) A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ Search in Google Scholar

Roces-Díaz JV, Jiménez-Alfaro B, Chytrý M, Díaz-Varela ER, Álvarez-Álvarez P (2018) Glacial refugia and mid-Holocene expansion delineate the current distribution of Castanea sativa in Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 491: 152–160. https://doi.org/10.1016/j.palaeo.2017.12.004 Search in Google Scholar

Tourvas N (2023) PopGenUtils: A collection of useful functions to deal with genetic data in R. R package version 0.1.8. Search in Google Scholar

Thurm EA, Werning M, Nagel R (2022) Tsuga und Thuja als Nadelholz-Alternativen im Klimawandel? - Standörtliches und waldwachstumskundliches Potential der westlichen Hemlocktanne und des Riesenlebensbaums in Deutschland. In: Nagel R, Schmidt M (eds) Tagungsband 2022: Deutscher Verband Forstlicher Forschungsanstalten. Sektion Ertragskunde. online Jahrestagung 2022.pp 138–152. Search in Google Scholar

Thurm EA, Heitz R (2018) Anbaueignung der Edelkastanie in Deutschland. LWF Wissen 81: 31–40 Search in Google Scholar

Thurm EA, Hernandez L, Baltensweiler A, Ayan S, Rasztovits E, Bielak K, Zlatanov TM, Hladnik D, Balic B, Freudenschuss A, Büchsenmeister R, Falk W (2018) Alternative tree species under climate warming in managed European forests. Forest Ecology and Management 430: 485–497. https://doi.org/10.1016/j.foreco.2018.08.028 Search in Google Scholar

Vashisht AA, Tuteja N (2006) Stress responsive DEAD-box helicases: A new pathway to engineer plant stress tolerance. Journal of Photochemistry and Photobiology B: Biology 84(2): 150–160. https://doi.org/10.1016/j.jphotobiol.2006.02.010 Search in Google Scholar

Wood SN (2017) Generalized Additive Models: An Introduction with R (2nd edition). Chapman and Hall/CRC.Zhang L, Wu S, Chang X, Wang X, Zhao Y, Xia Y, Trigiano RN, Jiao Y, Chen F (2020) The ancient wave of polyploidization events in flowering plants and their adaptation to environmental stress. Plant Cell Environ 2020:1-10. https://doi.org/10.1111/pce.13898 Search in Google Scholar

eISSN:
2509-8934
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Biologie, Molekularbiologie, Genetik, Biotechnologie, Botanik