Zitieren

Aldrich PR, Michler CH, Sun W, Romero-Severson J (2002) Microsatellite markers for northern red oak (Fagaceae: Quercus rubra). Molecular Ecology Notes 2(4):472–474. https://doi.org/10.1046/j.1471-8286.2002.00282.x Search in Google Scholar

Bantis F, Graap J, Früchtenicht E, Bussotti F, Radoglou K, Brüggemann W (2021) Field performances of Mediterranean oaks in replicate common gardens for future reforestation under climate change in Central and Southern Europe: first results from a four- year study. Forests 12:678. https://doi.org/10.3390/f12060678 Search in Google Scholar

Barbero M, Quézel P (1979) Contribution à l’ étude des groupements forestiers de Chypre. Documents Phytosociologiques 4:9-34. (in French) Search in Google Scholar

Belahbib N, Pemonge M, Ouassou A, Sbay H, Kremer A, Petit RJ (2001) Frequent cytoplasmic exchanges between oak species that are not closely related: Quercus suber and Q. ilex in Morocco. Molecular Ecology 10(8):2003–2012. https://doi.org/10.1046/j.0962-1083.2001.01330.x Search in Google Scholar

Boavida LC, Silva JP, Feijó JA (2001) Sexual reproduction in the cork oak (Quercus suber L.). II. Crossing intra-and interspecific barriers. Sexual Plant Reproduction 14(3):143–152. https://doi.org/10.1007/s004970100100 Search in Google Scholar

Bussotti F, Pollastrini M, Holland V, Brüggemann W (2015) Functional traits and adaptive capacity of European forests to climate change. Environmental and Experimental Botany 111:91–113. http://dx.doi.org/10.1016/j.envexpbot.2014.11.006 Search in Google Scholar

Cottam WP, Tucker JM, Santamour FS (1982) Oak hybridization at the University of Utah. State Arboretum of Utah, 82 p, ISBN 0942830008 Search in Google Scholar

Curtu AL, Sofletea N, Toader AV, Enescu MC (2011) Leaf morphological and genetic differentiation between Quercus robur L. and its closest relative, the drought-tolerant Quercus pedunculiflora K. Koch. Annals of Forest Science 68(7):1163–1172. https://doi.org/10.1007/s13595-011-0105-z Search in Google Scholar

Curtu AL, Moldovan IC, Enescu MC, Craciunesc L, Sofletea N (2011) Genetic Differentiation between Quercus frainetto Ten. and Q. pubescens Willd. in Romania. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39(1):275. https://doi.org/10.15835/nbha3915633 Search in Google Scholar

Deguilloux M, Dumolin-Lapègue S, Gielly L, Grivet D, Petit RJ (2003) A set of primers for the amplification of chloroplast microsatellites in Quercus. Molecular Ecology Notes 3(1):24–27. https://doi.org/10.1046/j.1471-8286.2003.00339.x Search in Google Scholar

Di Pietro R, Conte AL, Di Marzio P, Gianguzzi L, Spampinato G, Caldarella O, Fortini P (2020) A multivariate morphometric analysis of diagnostic traits in southern Italy and Sicily pubescent oaks. Folia Geobotanica 55(3):163–183. https://doi.org/10.1007/s12224-020-09378-0 Search in Google Scholar

Dow BD, Ashley MV, Howe HF (1995) Characterization of highly variable (GA/CT) n microsatellites in the bur oak, Quercus macrocarpa. Theoretical and Applied Genetics 91, 137–141. https://doi.org/10.1007/BF00220870 Search in Google Scholar

Durand J, Bodénès C, Chancerel E, Frigerio J-M, Vendramin G, Sebastiani F, Buonamici A, Gailing O, Koelewijn H-P, Villani F, Mattioni C, Cherubini M, Goicoechea PG, Herrán A, Ikaran Z, Cabané C, Ueno S, Alberto F, Dumoulin P-Y, Guichoux E, de Daruvar A, Kremer A, Plomion C (2010) A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics 11(1):570. https://doi.org/10.1186/1471-2164-11-570 Search in Google Scholar

Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10(3):564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x Search in Google Scholar

Flores-Rentería L, Whipple AV (2011) A new approach to improve the scoring of mononucleotide microsatellite loci. American Journal of Botany 98(3):e51– e53. https://doi.org/10.3732/ajb.1000428 Search in Google Scholar

Fortini P, Di Marzio P, AL Conte P, Antonecchia G, Proietti E, Di Pietro R (2022) Morphological and molecular results from a geographical transect focusing on Quercus pubescens/Q. virgiliana ecological-altitudinal vicariance in pen-insular Italy. Plant Biosystems (published online): 1-25. https://doi.org/10.1080/11263504.2022.2131923 Search in Google Scholar

Gil-Pelegrín E, Saz MÁ, Cuadrat JM, Peguero-Pina JJ, Sancho-Knapik D (2017) Oaks under Mediterranean-type climates: functional response to summer aridity. In: Gil-Pelegrín E, JJ Peguero-Pina and D Sancho-Knapik (eds) Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. Cham, Switzerland: Springer International Publishing AG, pp. 137–193, https://doi.org/10.1007/978-3-319-69099-5_5 Search in Google Scholar

Goicoechea PG, Herrán A, Durand J, Bodénès C, Plomion C, Kremer A (2015) A linkage disequilibrium perspective on the genetic mosaic of speciation in two hybridizing Mediterranean white oaks. Heredity 114(4):373–386. https://doi.org/10.1038/hdy.2014.113 Search in Google Scholar

Grossoni P, Bruschi P, Bussotti F, Pollastrini M, Selvi F (2021) The taxonomic interpretation of Mediterranean oaks of Quercus sect. Quercus (Fagaceae): uncertainties and diverging concepts. Flora Mediterranea 31:271–278. https://doi.org/https://doi.org/10.7320/FlMedit31SI.271 Search in Google Scholar

Hand R (2006) Supplementary notes to the flora of Cyprus V. Willdenowia 36(2):761–809. https://doi.org/10.3372/wi.36.36211 Search in Google Scholar

Hand R, Hadjikyriakou G, Christodoulou C (2011) Flora of Cyprus - a dynamic checklist [on-line, continuously updated]. Available at <http://www.flora-of-cyprus.eu> [cited 10-10-2022] Search in Google Scholar

Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2(4):618–620. https://doi.org/10.1046/j.1471-8286.2002.00305.x Search in Google Scholar

Hauser SS, Athrey G, Leberg PL (2021) Waste not, want not: Microsatellites remain an economical and informative technology for conservation genetics. Ecology and Evolution 11(22):15800–15814. https://doi.org/10.1002/ece3.8250 Search in Google Scholar

Hazarika R, Bolte A, Bednarova D, Chakraborty D, Gaviria J, Kanzian M, Kowalczyk J, Lackner M, Lstibůrek M, Longauer R, Nagy L (2021) Multi-actor perspectives on afforestation and reforestation strategies in Central Europe under climate change. Annals of Forest Science. 78(3):1-31. https://doi.org/10.5281/zenodo.4319854 Search in Google Scholar

Hipp AL, Manos PS, Hahn M, Avishai M, Bodénès C, Cavender-Bares J, Crowl AA, Deng M, Denk T, Fitz‐Gibbon S (2020) Genomic landscape of the global oak phylogeny. New Phytol. 226(4):1198–1212. https://doi.org/10.1111/nph.16162 Search in Google Scholar

Hornero J, Gallego FJ, Martinez I, Toribio M (2001) Testing the conservation of Quercus spp. microsatellites in the cork oak, Q. suber L. Silvae Genetica 50:162–166. Search in Google Scholar

Huff DR, Peakall R, Smouse PE (1993) RAPD variation within and among natural populations of outcrossing buffalograss [Buchloe dactyloides (Nutt.) Engelm.]. Theoretical and Applied Genetics 86(8):927–934. https://doi.org/10.1007/BF00211043 Search in Google Scholar

JACQ consortium (2004-2022) Virtual Herbaria Website [on-line]. Available at <https://www.jacq.org/> [cited 10-10-2022] Search in Google Scholar

Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16(5):1099–1106. https://doi.org/10.1111/j.1365-294x.2007.03089.x Search in Google Scholar

Kampfer S, Lexer C, Glossl J, Steinkellner H (1998) Brief report characterization of (GA)n microsatellite loci from Quercus robur. Hereditas 129(183):1–86. https://doi.org/10.1111/j.1601-5223.1998.00183.x Search in Google Scholar

Kotschy T (1862) Die Eichen Europa’s und des Orient’s. Eduard Hölzel’s Verlags-Expedition, Wien & Olmüz. Search in Google Scholar

Kremer A, Hipp AL (2020) Oaks: an evolutionary success story. New Phytologist 226(4):987–1011. https://doi.org/10.1111/nph.16274 Search in Google Scholar

Le Hardy de Beaulieu A, Lamant T (2006) Guide illustré des chênes, Vol. 1. Paris, France: Éditions du 8e, 688 p, ISBN 2960097408 (in French) Search in Google Scholar

Li Y, Y Zhang, Liao PC, Wang T, Wang X, Ueno S, Du FK (2021) Genetic, geographic, and climatic factors jointly shape leaf morphology of an alpine oak, Quercus aquifolioides Rehder & EH Wilson. Annals of Forest Science 78(3):1-18. https://doi.org/10.1007/s13595-021-01077-w Search in Google Scholar

Lind JF, Gailing O (2013) Genetic structure of Quercus rubra L. and Quercus ellipsoidalis EJ Hill populations at gene-based EST-SSR and nuclear SSR markers. Tree Genetics and Genomes 9(3):707–722. https://doi.org/10.1007/s11295-012-0586-4 Search in Google Scholar

Litt T, Pickarski N, Heumann G, Stockhecke M, Tzedakis PC (2014) A 600,000 year-long continental pollen record from Lake Van, eastern Anatolia (Turkey). Quaternary Science Reviews 104:30–41. https://doi.org/10.1016/j.quascirev.2014.03.017 Search in Google Scholar

Lopez de Heredia U, Mora-Márquez F, Goicoechea PG, Guillardín-Calvo L, Simeone MC, Soto Á (2020) ddRAD sequencing-based identification of genomic boundaries and permeability in Quercus ilex and Q. suber hybrids. Frontiers in Plant Science 11, 564414. https://doi.org/10.3389/fpls.2020.564414 Search in Google Scholar

Meikle RD (1985) Flora of Cyprus, vol. II. Kew, United Kingdom: Bentham-Moxon Trust, 1136 p, ISBN 0950487643 Search in Google Scholar

Mohammad-Panah N, Shabanian N, Khadivi A, Rahmani M-S, Emami A (2017) Genetic structure of gall oak (Quercus infectoria) characterized by nuclear and chloroplast SSR markers. Tree Genetics and Genomes 13(3):1–12. https://doi.org/10.1007/s11295-017-1146-8 Search in Google Scholar

Neophytou C, Dounavi A, Aravanopoulos FA (2008) Conservation of nuclear SSR loci reveals high affinity of Quercus infectoria ssp. veneris A. Kern (Fagaceae) to section Robur. Plant Molecular Biology Reporter 26(2):133–141. https://doi.org/10.1007/s11105-008-0025-8 Search in Google Scholar

Neophytou C (2010) A study of genetic differentiation and hybridization among oak species with divergent ecological and evolutionary profiles. Albert-Ludwigs-Universität Freiburg, 62 p. Search in Google Scholar

Neophytou C, Aravanopoulos FA, Fink S, Dounavi A (2011a) Interfertile oaks in an island environment. II. Limited hybridization between Quercus alnifolia Poech and Q. coccifera L. in a mixed stand. European Journal of Forest Research 130(4):623–635. https://doi.org/10.1007/s10342-010-0454-4 Search in Google Scholar

Neophytou C, Dounavi A, Fink S, Aravanopoulos FA (2011b) Interfertile oaks in an island environment: I. High nuclear genetic differentiation and high degree of chloroplast DNA sharing between Q. alnifolia and Q. coccifera in Cyprus. A multipopulation study. European Journal of Forest Research 130(4):2026–2035. https://doi.org/10.1007/s10342-010-0442-8 Search in Google Scholar

Neophytou C, Michiels H-G (2013) Upper Rhine Valley: A migration crossroads of middle European oaks. Forest Ecology and Management 304:89–98. https://doi.org/10.1016/j.foreco.2013.04.020 Search in Google Scholar

Neophytou C (2014) Bayesian clustering analyses for genetic assignment and study of hybridization in oaks: Effects of asymmetric phylogenies and asymmetric sampling schemes. Tree Genetics and Genomes 10(2):273–285. https://doi.org/10.1007/s11295-013-0680-2 Search in Google Scholar

Neophytou C, Palli G, Dounavi A, Aravanopoulos FA (2007) Morphological differentiation and hybridization between Quercus alnifolia Poech and Quercus coccifera L. (Fagaceae) in Cyprus. Silvae Genetica 56(6):271–277. https://doi.org/10.1515/sg-2007-0038 Search in Google Scholar

Orlóci L (1978) Multivariate analysis in vegetation research. The Hague, Netherlands: Springer, 276 p, ISBN 9401756082 Search in Google Scholar

Ortego J, Bonal R (2010) Natural hybridisation between kermes (Quercus coccifera L.) and holm oaks (Q. ilex L.) revealed by microsatellite markers. Plant Biology 12:234–238. https://doi.org/10.1111/j.1438-8677.2009.00244.x Search in Google Scholar

Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research - an update. Bioinformatics 28:2537–2539. https://doi.org/10.1093/bioinformatics/bts460 Search in Google Scholar

Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6(1):288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x Search in Google Scholar

Puckett EE (2017) Variability in total project and per sample genotyping costs under varying study designs including with microsatellites or SNPs to answer conservation genetic questions. Conservation Genetics Resourses 9:289–304. https://doi.org/10.1007/s12686-016-0643-7 Search in Google Scholar

Rosenberg NA (2005) Algorithms for selecting informative marker panels for population assignment. Journal of Computation Biology 12(9):1183–1201. https://doi.org/10.1089/cmb.2005.12.1183 Search in Google Scholar

Rosenberg NA, Li LM, Ward R, Pritchard JK (2003) Informativeness of genetic markers for inference of ancestry. American Journal Human Genetics 73(6):1402–1422. https://doi.org/10.1086/380416 Search in Google Scholar

Schnitzler J, Steinbrecher R, Zimmer I, Steigner D, Fladung M (2004) Hybridization of European oaks (Quercus ilex × Q. robur) results in a mixed isoprenoid emitter type. Plant, Cell & Environment 27(5):585–593. https://doi.org/10.1111/j.1365-3040.2003.01169.x Search in Google Scholar

Scotti-Saintagne C, Mariette S, Porth I, Goicoechea PG, Barreneche T, Bodénes C, Burg K, Kremer A (2004) Genome scanning for interspecific differentiation between two closely related oak species [Quercus robur L. and Q. petraea (Matt.) Liebl.]. Genetics 168(3):1615–1626. https://doi.org/10.1534/genetics.104.026849 Search in Google Scholar

Seim A, Treydte K, Trouet V, Frank D, Fonti P, Tegel W, Panayotov M, Fernández-Donado L, Krusic P, Büntgen U (2015) Climate sensitivity of Mediterranean pine growth reveals distinct east–west dipole. International Journal of Climatology 35(9):2503–2513. https://doi.org/10.1002/joc.4137 Search in Google Scholar

Simeone MC, Cardoni S, Piredda R, Imperatori F, Avishai M, Grimm GW, Denk T (2018) Comparative systematics and phylogeography of Quercus Section Cerris in western Eurasia: inferences from plastid and nuclear DNA variation. PeerJ 6:e5793. https://doi.org/10.7717/peerj.5793 Search in Google Scholar

Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139(1):457–462. https://doi.org/10.1093/genetics/139.1.457 Search in Google Scholar

Soto A, Lorenzo Z, Gil L (2003) Nuclear microsatellite markers for the identification of Quercus ilex L. and Q. suber L. hybrids. Silvae Genetica 52(2):63–66. Search in Google Scholar

Steinkellner H, Fluch S, Turetschek E, Lexer C, Streiff R, Kremer A, Burg K, Glössl J (1997) Identification and characterization of (GA/CT) n-microsatellite loci from Quercus petraea. Plant Molecular Biology 33(6):1093–1096. https://doi.org/10.1023/A:1005736722794 Search in Google Scholar

Stephan JM, Teeny PW, Vessella F, Schirone B (2018) Oak morphological traits: between taxa and environmental variability. Flora 243:32–44. https://doi.org/10.1016/j.flora.2018.04.001 Search in Google Scholar

Toumi L, Lumaret R (2001) Allozyme characterisation of four Mediterranean evergreen oak species. Biochemical Systematics and Ecology 29(8):799–817. https://doi.org/10.1016/S0305-1978(01)00024-2 Search in Google Scholar

Tsintides TC, Hadjikyriakou GN, Christodoulou CS (2002) Trees and shrubs in Cyprus. Nicosia, Cyprus: Foundation A.G Leventis and Cyprus Forest Association, 442 p, ISBN 9963560504 Search in Google Scholar

Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38(6):1358–1370. https://doi.org/10.2307/2408641 Search in Google Scholar

Weising K, Gardner RC (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42(1):9–19. https://doi.org/10.1139/g98-104 Search in Google Scholar

Zohary M (1966) Flora Palaestina, Part One: Equisetaceae to Moringaceae. Jerusalem, Israel: The Israel Academy of Sciences and Humanities, 364 p, ISBN 9652080012 Search in Google Scholar

eISSN:
2509-8934
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Biologie, Molekularbiologie, Genetik, Biotechnologie, Botanik