Uneingeschränkter Zugang

A Low-Cost Vehicle Assistance System for Detection of Critical Driving Situations

, , ,  und   
28. Nov. 2024

Zitieren
COVER HERUNTERLADEN

Zhang, H., Ni, D., Ding, N., Sun, Y., Zhang, Q., Li, X. “Structural analysis of driver fatigue behavior: A systematic review”, Transportation Research Interdisciplinary Perspectives 21, 2023. DOI: 10.1016/j.trip.2023.100865 Search in Google Scholar

El-Nabi, S. A., El-Shafai, W., El-Rabaie, E. S. M., Ramadan, K. F., Abd El-Samie, F. E., Mohsen, S. “Machine learning and deep learning techniques for driver fatigue and drowsiness detection: a review”, Multimed. Tools Appl., 2023. DOI: 10.1007/s11042-023-15054-0 Search in Google Scholar

Ueno, H., Kaneda, M., Tsukino, M. “Development of drowsiness detection system”, 2002. DOI: 10.1109/vnis.1994.396873 Search in Google Scholar

Saini, V. “Driver Drowsiness Detection System and Techniques : A Review”, Int. J. Comput. Sci. Inf. Technol. 5 (3), 2014. Search in Google Scholar

Chai, M., Li, S. W., Sun, W. C., Guo, M. Z., Huang M. Y. “Drowsiness monitoring based on steering wheel status”, Transp. Res. Part D Transp. Environ. 66, 2019. DOI: 10.1016/j.trd.2018.07.007 Search in Google Scholar

Rongben, W., Lie, G., Bingliang, T., Lisheng, J. “Monitoring mouth movement for driver fatigue or distraction with one camera”, 2004. DOI: 10.1109/itsc.2004.1398917 Search in Google Scholar

Ji, Q., Zhu, Z., Lan, P. “Real-time nonintrusive monitoring and prediction of driver fatigue”, IEEE Trans. Veh. Technol. 53 (4), 2004. DOI: 10.1109/TVT.2004.830974 Search in Google Scholar

Čolić, A., Marques, O., Furht, B., “Driver Drowsiness detection System and Solutions”, 2014. Search in Google Scholar

Of, O., Carriers, M. “PERCLOS : A Valid Psychophysiological Measure of Alertness as Assessed by Psychomotor Vigilance”, October 31 (5), 1998. Search in Google Scholar

Škoda auto s.r.o. “Fatigue recognition assistant”, [Online] Available at: https://eshop.skoda-auto.sk/en_SK/fatigue-recognition-assistant/p/5E0054801 Search in Google Scholar

Volkswagen Group, “The Transporter 6.1 Optional Extra Brochure”, 2020. [Online]. Available at: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiq6sCk6IKEAxWq0AIHHWNyDBUQFnoECDQQAQ&url=https%3A%2F%2Fwww.volkswagenvans.ie%2Fidhub%2Fcontent%2Fdam%2Fonehub_nfz%2Fimporters%2Fie%2Fmodels%2Fdownloads%2Foptional-ext Search in Google Scholar

I. Rear View Safety, “iVue Driver Fatigue System”. [Online]. Available at: https://www.rearviewsafety.com/driver-fatigue-system-rvs-335.html Search in Google Scholar

Kumar, A., Kaur, A., Kumar, M. “Face detection techniques: a review”, Artif. Intell. Rev. 52 (2), 2019. DOI: 10.1007/s10462-018-9650-2 Search in Google Scholar

Hatem, H., Beiji, Z., Majeed, R. “A Survey of Feature Base Methods for Human Face Detection”, Int. J. Control Autom. 8 (5), 2015. DOI: 10.14257/ijca.2015.8.5.07 Search in Google Scholar

Anila, S., Devarajan, N. “Simple and Fast Face Detection System Based on Edges”, Int. J. Univers. Comput. Sci. 1 (2), 2010. Search in Google Scholar

Yao, J., Cham, W. K. “Efficient model-based linear head motion recovery from movies”, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2, 2004. DOI: 10.1109/cvpr.2004.1315193 Search in Google Scholar

Jones, M., Viola, P. “Fast multi-view face detection”, Mitsubishi Electr. Res. Lab TR-20003-96 3.14, 2003. Search in Google Scholar

Viola P., Jones, M. “Rapid object detection using a boosted cascade of simple features”, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1, 2001. DOI: 10.1109/cvpr.2001.990517 Search in Google Scholar

Ahmed, M. I. B., et al., “A Deep-Learning Approach to Driver Drowsiness Detection”, Safety 9 (3), 2023. DOI: 10.3390/safety9030065 Search in Google Scholar

Guede-Fernández, F., Fernández-Chimeno, M., Ramos-Castro, J., García-González, M. A. “Driver Drowsiness Detection Based on Respiratory Signal Analysis”, IEEE Access 7, 2019. DOI: 10.1109/ACCESS.2019.2924481 Search in Google Scholar

Wu, Y., Ji, Q. “Facial Landmark Detection: A Literature Survey”, Int. J. Comput. Vis. 127 (2), 2019. DOI: 10.1007/s11263-018-1097-z Search in Google Scholar

Ferkova, Z., Matula, P. “Multimodal Point Distribution Model for Anthropological Landmark Detection”, in Proceedings - International Conference on Image Processing, ICIP 2019, September, 2019. DOI: 10.1109/ICIP.2019.8803252 Search in Google Scholar

Wang, N., Gao, X., Tao, D., Yang, H., Li, X. “Facial feature point detection: A comprehensive survey”, Neurocomputing 275, 2018. DOI: 10.1016/j.neucom.2017.05.013 Search in Google Scholar

Kazemi, V., Sullivan, J. “One millisecond face alignment with an ensemble of regression trees”, 2014. DOI: 10.1109/CVPR.2014.241 Search in Google Scholar

Milesich, T., Danko, J. Bucha, J. “Neural Networks - A Way to Increase the Fuel Efficiency of Vehicles”, Strojnícky časopis Journal of Mechanical Engineering 68 (1), pp. 81 88, 2018. DOI: 10.2478/scjme-2018-0008 Search in Google Scholar

Mishra, A. “Machine Learning Algorithm for Surface Quality Analysis of Friction Stir Welded Joint”, Strojnícky časopis Journal of Mechanical Engineering 70 (2), pp. 11 20, 2020. DOI: 10.2478/scjme-2020-0016 Search in Google Scholar

Ying, X. “An Overview of Overfitting and its Solutions”, in Journal of Physics: Conference Series 1168 (2), 2019. DOI: 10.1088/1742-6596/1168/2/022022 Search in Google Scholar

Luo, P., Wang, X., Tang, X. “Hierarchical face parsing via deep learning,” 2012. DOI: 10.1109/CVPR.2012.6247963 Search in Google Scholar

Sun, Y., Wang, X., Tang, X. “Deep convolutional network cascade for facial point detection”, 2013. DOI: 10.1109/CVPR.2013.446 Search in Google Scholar

Chen, Y., Yang, J., Qian, J. “Recurrent neural network for facial landmark detection”, Neurocomputing 219, 2017. DOI: 10.1016/j.neucom.2016.09.015 Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Maschinenbau, Grundlagen des Maschinenbaus, Mechanik