Uneingeschränkter Zugang

Influencing Geometrical Parameters of Tools in Friction Stirring Technology: A Short Review


Zitieren

[1] Ahmadkhaniha, D., Heydarzadeh Sohi, M., Zarei-Hanzaki, A. “Optimisation of friction stir processing parameters to produce sound and fine grain layers in pure magnesium”, Sci. Technol. Weld. Join. 19 (3), pp. 235 – 241, 2014.10.1179/1362171813Y.0000000186 Search in Google Scholar

[2] Mahoney, M. W. “Friction stir welding and processing”, Mater. Sci. Eng. R Reports, 50 (1 – 2), p. 360, 2007. Search in Google Scholar

[3] Chang, C. I., Du, X. H., Huang, J. C. “Achieving ultrafine grain size in Mg-Al-Zn alloy by friction stir processing”, Scr. Mater. 57 (3), pp. 209 – 212, 2007.10.1016/j.scriptamat.2007.04.007 Search in Google Scholar

[4] Zhang, Y., Sato, Y. S., Kokawa, H., Park, S. H. C., Hirano, S. “Stir zone microstructure of commercial purity titanium friction stir welded using pcBN tool”, Mater. Sci. Eng. A, 488 (1–2), pp. 25 – 30, 2008.10.1016/j.msea.2007.10.062 Search in Google Scholar

[5] McNelley, T. R., Swaminathan, S., Su, J. Q. “Recrystallization mechanisms during friction stir welding/processing of aluminum alloys”, Scr. Mater. 58 (5), pp. 349 – 354, 2008.10.1016/j.scriptamat.2007.09.064 Search in Google Scholar

[6] Ma, Z. Y. “Friction Stir Processing Technology: A Review”, Metall. Mater. Trans. A 39 (3), pp. 642–658, 2008.10.1007/s11661-007-9459-0 Search in Google Scholar

[7] Ma, Z. Y., Liu, F. C., Mishra, R. S. “Superplastic deformation mechanism of an ultrafine-grained aluminum alloy produced by friction stir processing”, Acta Mater 58 (14), pp. 4693 – 4704, 2010. Search in Google Scholar

[8] Ma, Z. Y., Mishra, R. S., Mahoney, M. W. “Superplastic deformation behaviour of friction stir processed 7075Al alloy”, Acta Mater. 50, pp. 4419 – 4430, 2002. Search in Google Scholar

[9] Charit, I., Mishra, R. S. “High strain rate superplasticity in a commercial 2024 Al alloy via friction stir processing”, Mater. Sci. Eng. A 359 (1–2), pp. 290 – 296, 2003.10.1016/S0921-5093(03)00367-8 Search in Google Scholar

[10] Hsu, C. J., Kao, P. W., Ho, N. J., Chang, C. Y. P. Y. “Al-Al3Ti nanocomposites produced in situ by friction stir processing”, Acta Mater. 54 (19), pp. 5241 – 5249, 2006. Search in Google Scholar

[11] Ke, L., Huang, C., Xing, L., Huang, K. “Al – Ni intermetallic composites produced in situ by friction stir processing”, J. Alloys Compd. 503 (2), pp. 494 – 499, 2010.10.1016/j.jallcom.2010.05.040 Search in Google Scholar

[12] Hsu, C. J., Kao, P. W., Ho, N. J. “Ultrafine-grained Al-Al2Cu composite produced in situ by friction stir processing”, Scr. Mater. 53 (3), pp. 341 – 345, 2005.10.1016/j.scriptamat.2005.04.006 Search in Google Scholar

[13] Lim, D. K., Shibayanagi, T., Gerlich, A. P. “Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing”, Mater. Sci. Eng. A 507 (1–2), pp. 194 – 199, 2009.10.1016/j.msea.2008.11.067 Search in Google Scholar

[14] Dixit, M., Newkirk, J. W., Mishra, R. S. “Properties of friction stir-processed Al 1100-NiTi composite”, Scr. Mater. 56 (6), pp. 541 – 544, 2007.10.1016/j.scriptamat.2006.11.006 Search in Google Scholar

[15] Barmouz, M., Asadi, P., Besharati Givi, M. K., Taherishargh, M. “Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: Effect of SiC particles’ size and volume fraction”, Mater. Sci. Eng. A 528 (3), pp. 1740 – 1749, 2011. Search in Google Scholar

[16] Zhao, Y. H., Lin, S. B., Wu, L., Qu, F. X. “The influence of pin geometry on bonding and mechanical properties in friction stir weld 2014 Al alloy”, Mater. Lett. 59 (23), pp. 2948 – 2952, 2005. Search in Google Scholar

[17] Scialpi, A., De Filippis, L. A. C., Cavaliere, P. “Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy”, Materials & Design 28, pp. 1124 – 1129, 2007. Search in Google Scholar

[18] Elangovan, K., Balasubramanian, V. “Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy,” Mater. Des. 29, pp. 362 – 373, 2008.10.1016/j.matdes.2007.01.030 Search in Google Scholar

[19] Arora, A., De, A., Debroy, T. “Toward optimum friction stir welding tool shoulder diameter”, Scr. Mater. 64 (1), pp. 9 – 12, 2011.10.1016/j.scriptamat.2010.08.052 Search in Google Scholar

[20] Krasnowski, K., Hamilton, C., Dymek, S. “Influence of the tool shape and weld configuration on microstructure and mechanical properties of the Al 6082 alloy FSW joints”, Arch. Civ. Mech. Eng. 15 (1), pp. 133 – 141, 2015.10.1016/j.acme.2014.02.001 Search in Google Scholar

[21] Das, J., Rao, G. A., Pabi, S. K., Sankaranarayana, M., Nandy, T. K. “Thermo-mechanical processing, microstructure and tensile properties of a tungsten heavy alloy,” Mater. Sci. Eng. A 613, pp. 48 – 59, 2014.10.1016/j.msea.2014.06.072 Search in Google Scholar

[22] Ghosh, M., Kumar, K., Mishra, R. S. “Analysis of microstructural evolution during friction stir welding of ultrahigh-strength steel”, Scr. Mater. 63 (8), pp. 851 – 854, 2010.10.1016/j.scriptamat.2010.06.032 Search in Google Scholar

[23] Najafi, M., Nasiri, A. M., Kokabi, A. H. “Microstructure and Hardness of Friction Stir Processed AZ31 with SiC”, International Journal of Modern Physics B 22, pp. 2879 – 2885, 2008. Search in Google Scholar

[24] Kumar, K., Kailas, S. V. “The role of friction stir welding tool on material flow and weld formation”, Mater. Sci. Eng. A 485 (1–2), pp. 367 – 374, 2008.10.1016/j.msea.2007.08.013 Search in Google Scholar

[25] Nandan, R., Debroy, T., Bhadeshia, H. K. D. H. “Recent advances in friction-stir welding – Process, weldment structure and properties”, Progress in Materials Science 53, pp. 980 – 1023, 2008.10.1016/j.pmatsci.2008.05.001 Search in Google Scholar

[26] Scutelnicu, E. “Fundamentals of the Process and Tools Design : Friction Stir Processing of Materials”, vol. 47, no. September 2003, p. 4639, 2006. Search in Google Scholar

[27] Rai, R., De, A., Bhadeshia, H. K. D. H., DebRoy, T., “Review: friction stir welding tools,” Sci. Technol. Weld. Join. 16 (4), pp. 325 – 342, 2011.10.1179/1362171811Y.0000000023 Search in Google Scholar

[28] Palanivel, R., Koshy Mathews, P., Murugan, N., Dinaharan, I. “Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys”, Mater. Des. 40, pp. 7 – 16, 2012.10.1016/j.matdes.2012.03.027 Search in Google Scholar

[29] Boz, M., Kurt, A. “The influence of stirrer geometry on bonding and mechanical properties in friction stir welding process”, Mater. Des. 25 (4), pp. 343 – 347, 2004.10.1016/j.matdes.2003.11.005 Search in Google Scholar

[30] Mishra, R. S., Ma, Z. Y. “Friction stir welding and processing”, Mater. Sci. Eng. R Reports 50 (1–2), pp. 1 – 78, 2005.10.1016/j.mser.2005.07.001 Search in Google Scholar

[31] Shashi Kumar, S., Murugan, N., Ramachandran K. K. “Influence of tool material on mechanical and microstructural properties of friction stir welded 316L austenitic stainless steel butt joints”, Int. J. Refract. Met. Hard Mater. 58, pp. 196 – 205, 2016.10.1016/j.ijrmhm.2016.04.015 Search in Google Scholar

[32] Darras, B. M., Khraisheh, M. K., Abu-Farha, F. K., Omar M. A. “Friction stir processing of commercial AZ31 magnesium alloy,” J. Mater. Process. Technol. 191 (1–3), pp. 77 – 81, 2007.10.1016/j.jmatprotec.2007.03.045 Search in Google Scholar

[33] Keerthana, B., Vijaya Kumar, G., Anand Babu, K. “Effect of minimum quantity lubrication on surface roughness and temperature in milling of EN31 steel for die making”, Strojnícky časopis – Journal of Mechanical Engineering 69 (1), pp. 61 – 68, 2019. DOI: 10.2478/scjme-2019-000510.2478/scjme-2019-0005 Search in Google Scholar

[34] de Giorgi, M.,Scialpi, A., Panella, F. W., de Filippis, L. A. C. “Effect of shoulder geometry on residual stress and fatigue properties of AA6082 FSW joints”, J. Mech. Sci. Technol. 23 (1), pp. 26 – 35, 2009.10.1007/s12206-008-1006-4 Search in Google Scholar

[35] Handa, A, Chawla, V. “Experimental evaluation of mechanical properties of friction welded dissimilar steels under varying axial pressures”, Strojnícky časopis – Journal of Mechanical Engineering 66 (1), pp. 27 – 36, 2016. DOI: 10.1515/scjme-2016-000810.1515/scjme-2016-0008 Search in Google Scholar

[36] Ramachandran, K. K., Murugan, N., S. K. S, “An Assessment on Friction Stir Welding of High Melting Temperature Materials”, Applied Mechanics and Materials 594, pp. 43 – 47, 2014.10.4028/www.scientific.net/AMM.592-594.43 Search in Google Scholar

[37] Pilchak, A. L., Williams, J. C., “Microstructure and texture evolution during friction stir processing of fully lamellar Ti-6Al-4V”, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 42 (3), pp. 773 – 794, 2011.10.1007/s11661-010-0434-9 Search in Google Scholar

[38] Feng, A. H., Ma, Z. Y. “Formation of Cu2FeAl7phase in friction-stir-welded SiCp/Al-Cu-Mg composite,” Scr. Mater. 57 (12), pp. 1113 – 1116, 2007. Search in Google Scholar

[39] R. S. Mishra, P. S. De, and N. Kumar, Friction Stir Welding and Processing. 2014.10.1007/978-3-319-07043-8 Search in Google Scholar

[40] Siddiquee, A. N., Pandey, S. “Experimental investigation on deformation and wear of WC tool during friction stir welding (FSW) of stainless steel”, 2014.10.1007/s00170-014-5846-z Search in Google Scholar

[41] Thompson, B., Babu, S. S. “Tool Degradation Characterization in the Friction Stir Welding of Hard Metals”, Weld. J. 89 (12), pp. 256 – 261, 2010. Search in Google Scholar

[42] Nathan, S. R., Malarvizhi, S., Balasubramanian, V., Rao, A. G. “Failure analysis of tungsten based tool materials used in friction stir welding of high strength low alloy steels”, EFA 66, pp. 88 – 98, 2016.10.1016/j.engfailanal.2016.04.018 Search in Google Scholar

[43] Gan, W., Li, Z. T., Khurana, S. “Tool materials selection for friction stir welding of L80 steel”, Sci. Technol. Weld. Join. 12 (7), pp. 610 – 613, 2007.10.1179/174329307X213792 Search in Google Scholar

[44] García-Bernal, M. A., Mishra, R. S., Verma, R., Hernández-silva, D. “Influence of friction stir processing tool design on microstructure and superplastic behavior of Al-Mg alloys”, Mater. Sci. Eng. A 670, pp. 9 – 16, 2016.10.1016/j.msea.2016.05.115 Search in Google Scholar

[45] Thomas, W. M., Nicholas, E. D., Smith, S. D. “Friction stir welding - tool developments,” no. February, pp. 11 – 15, 2001. Search in Google Scholar

[46] Buffa, G., Hua, J., Shivpuri, R., Fratini, L. “Design of the friction stir welding tool using the continuum based FEM model”, Mater. Sci. Eng. A 419 (1–2), pp. 381 – 388, 2006.10.1016/j.msea.2005.09.041 Search in Google Scholar

[47] Fujii, H., Cui, L., Maeda, M., Nogi, K. “Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys”, 419, pp. 25 – 31, 2006.10.1016/j.msea.2005.11.045 Search in Google Scholar

[48] Colegrove, P. A., Shercliff, H. R. “Development of Trivex friction stir welding tool Part 1 – two-dimensional flow modelling and experimental validation”, 9 (4), pp. 345 – 351, 2004.10.1179/136217104225021670 Search in Google Scholar

[49] Colegrove, P. A., Shercliff, H. R. “3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile,”169, pp. 320 – 327, 2005.10.1016/j.jmatprotec.2005.03.015 Search in Google Scholar

[50] Colegrove, P. A., Shercliff, H. R. “Development of Trivex friction stir welding tool Part 2 – three-dimensional flow modelling”, Sci. Technol. Weld. Join. 9 (4), pp. 352 – 361, 2004.10.1179/136217104225021661 Search in Google Scholar

[51] Elangovan, K., Balasubramanian, V. “Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy”, J. Mater. Process. Technol. 200 (1–3), pp. 163 – 175, 2008.10.1016/j.jmatprotec.2007.09.019 Search in Google Scholar

[52] Elangovan, K., Balasubramanian, V. “Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy,” 459, pp. 7 – 18, 2007.10.1016/j.msea.2006.12.124 Search in Google Scholar

[53] H. K. Mohanty, M. M. Mahapatra, P. Kumar, P. Biswas, and N. R. Mandal, “Effect of Tool Shoulder and Pin Probe Profiles on Friction Stirred Aluminum Welds – a Comparative Study”, pp. 200 – 207, 2012.10.1007/s11804-012-1123-4 Search in Google Scholar

[54] M. Skinner and R. L. Edwards, “Improvements to the FSW Process Using the Self-Reacting Technology,” Mater. Sci. Forum 426–432, pp. 2849 – 2854, 2009. Search in Google Scholar

[55] W. Y. Li et al., “Effects of tool rotational and welding speed on microstructure and mechanical properties of bobbin-tool friction-stir welded Mg AZ31,” 64, pp. 714 – 720, 2014.10.1016/j.matdes.2014.07.023 Search in Google Scholar

[56] P. L. Threadgill, M. M. Z. Ahmed, J. P. Martin, J. G. Perrett, and B. P. Wynne, “The use of bobbin tools for friction stir welding of aluminium alloys”, Mater. Sci. Forum 642, pp. 1179 – 1184, 2010. Search in Google Scholar

[57] Y. Huang, T. Wang, W. Guo, L. Wan, S. Lv, “Microstructure and surface mechanical property of AZ31 Mg / SiC p surface composite fabricated by Direct Friction Stir Processing,” J. Mater. 59, pp. 274–278, 2014.10.1016/j.matdes.2014.02.067 Search in Google Scholar

[58] I. Galvão, R. M. Leal, D. M. Rodrigues, A. Loureiro, “Journal of Materials Processing Technology Influence of tool shoulder geometry on properties of friction stir welds in thin copper sheets”, 213, pp. 129–135, 2013.10.1016/j.jmatprotec.2012.09.016 Search in Google Scholar

[59] Ø. Frigaard, Ø. Grong, and O. T. Midling “A Process Model for Friction Stir Welding of Age Hardening Aluminum Alloys”, 32, no. May, pp. 1189 – 1190, 2001. Search in Google Scholar

[60] S. Lomolino, R. Tovo, and J. Santos “On the fatigue behaviour and design curves of friction stir butt-welded Al alloys”, 27, pp. 305 – 316, 2005.10.1016/j.ijfatigue.2004.06.013 Search in Google Scholar

[61] M. N. James, D. G. Hattingh, and G. R. Bradley “Weld tool travel speed effects on fatigue life of friction stir welds in 5083 aluminium”, 25, pp. 1389 – 1398, 2003. Search in Google Scholar

[62] M. Bahrami, M. K. Besharati Givi, K. Dehghani, and N. Parvin, “On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique”, Mater. Des. 53, pp. 519 – 527, 2014.10.1016/j.matdes.2013.07.049 Search in Google Scholar

[63] G. Casalino, S. Campanelli, and M. Mortello, “Influence of Shoulder Geometry and Coating of the Tool on the Friction Stir Welding of Aluminium Alloy Plates”, Procedia Eng. 69, pp. 1541 – 1548, 2014. Search in Google Scholar

[64] P. K. Sahu and S. Pal, “Effect of Shoulder Diameter and Plunging Depth on Mechanical Properties and Thermal History of Friction Stir Welded Magnesium Alloy”, 5th Int. 26th All India Manuf. Technol. Des. Res. Conf. (AIMTDR 2014), no. Aimtdr, pp. 12 – 17, 2014. Search in Google Scholar

[65] K. Ramanjaneyulu, G. Madhusudhan Reddy, and A. Venugopal Rao, “Role of Tool Shoulder Diameter in Friction Stir Welding: An Analysis of the Temperature and Plastic Deformation of AA 2014 Aluminium Alloy”, Trans. Indian Inst. Met. 67 (5), pp. 769 – 780, 2014.10.1007/s12666-014-0401-z Search in Google Scholar

[66] G. Padmanaban and V. Balasubramanian, “Selection of FSW tool pin profile, shoulder diameter and material for joining AZ31B magnesium alloy - An experimental approach”, Mater. Des. 30 (7), pp. 2647 – 2656, 2009. Search in Google Scholar

[67] S. Malarvizhi and V. Balasubramanian, “Influences of tool shoulder diameter to plate thickness ratio (D/T) on stir zone formation and tensile properties of friction stir welded dissimilar joints of AA6061 aluminum-AZ31B magnesium alloys”, Materials and Design 40, pp. 453 – 460, 2012.10.1016/j.matdes.2012.04.008 Search in Google Scholar

[68] S. Hirasawa, H. Badarinarayan, K. Okamoto, and T. Tomimura, “Analysis of effect of tool geometry on plastic flow during friction stir spot welding using particle method”, J. Mater. Process. Tech. 210 (11), pp. 1455 – 1463, 2010. Search in Google Scholar

[69] H. Badarinarayan, Y. Shi, X. Li, and K. Okamoto, “International Journal of Machine Tools & Manufacture Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminum 5754-O sheets”, Int. J. Mach. Tools Manuf. 49 (11), pp. 814 – 823, 2009.10.1016/j.ijmachtools.2009.06.001 Search in Google Scholar

[70] I. Z. Radisavljevic, A. B. Zivkovic, V. K. Grabulov, N. A. Radovic, “Influence of pin geometry on mechanical and structural properties of butt friction stir welded 2024-T351 aluminum alloy”, pp. 323 – 330, 2014.10.2298/HEMIND131206020R Search in Google Scholar

[71] M. Azizieh, A. H. Kokabi, and P. Abachi, “Effect of rotational speed and probe profile on microstructure and hardness of AZ31 / Al 2 O 3 nanocomposites fabricated by friction stir processing”, Mater. Des. 32 (4), pp. 2034 – 2041, 2011. Search in Google Scholar

[72] G. Faraji and P. Asadi, “Characterization of AZ91 / alumina nanocomposite produced by FSP”, Mater. Sci. Eng. A 528 (6), pp. 2431 – 2440, 2011. Search in Google Scholar

[73] M. Ilangovan, S. R. Boopathy, and V. Balasubramanian, “Effect of tool pin profile on microstructure and tensile properties of friction stir welded dissimilar AA 6061 e AA 5086 aluminium alloy joints”, Def. Technol. 11 (2), pp. 174 – 184, 2015.10.1016/j.dt.2015.01.004 Search in Google Scholar

[74] M. Rezaee, M. Farahani, S. Amir, and D. Alavi, “Investigation on the effects of tool geometry on the microstructure and the mechanical properties of dissimilar friction stir welded polyethylene and polypropylene sheets”, J. Manuf. Process., vol. 26, pp. 269 – 279, 2017.10.1016/j.jmapro.2017.02.018 Search in Google Scholar

[75] K. Colligan, “Material Flow Behavior during Friction Stir Welding of Aluminum”, no. July, pp. 229 – 237, 1999. Search in Google Scholar

[76] M. Guerra, C. Schmidt, J. C. Mcclure, L. E. Murr, and A. C. Nunes, “Flow patterns during friction stir welding”, 49, pp. 95 – 101, 2003.10.1016/S1044-5803(02)00362-5 Search in Google Scholar

[77] X. Cao and M. Jahazi, “Effect of welding speed on the quality of friction stir welded butt joints of a magnesium alloy”, Mater. Des. 30 (6), pp. 2033 – 2042, 2009. Search in Google Scholar

[78] S. M. Chowdhury, D. L. Chen, S. D. Bhole, and X. Cao, “Effect of pin tool thread orientation on fatigue strength of friction stir welded AZ31B-H24 Mg butt joints”, Procedia Eng. 2 (1), pp. 825–833, 2010.10.1016/j.proeng.2010.03.089 Search in Google Scholar

[79] T. U. Seidel and A. P. Reynolds, “Visualization of the Material Flow in AA2195 Friction-Stir Welds Using a Marker Insert Technique”, 32, no. November, pp. 7 – 8, 2001.10.1007/s11661-001-1038-1 Search in Google Scholar

[80] M. Fairman, N. Afrin, D. L. Chen, X. Cao, and M. Jahazi, “Microstructural evaluation of friction stir processed {AZ31B-H24} magnesium alloy,” Can. Metall. Q. 46, no. April, pp. 425 – 432, 2007.10.1179/cmq.2007.46.4.425 Search in Google Scholar

[81] A. Kumar and P. Biswas, “Effect of tool pin profile on the material flow characteristics of AA6061”, J. Manuf. Process. 26, pp. 382 – 392, 2017.10.1016/j.jmapro.2017.03.005 Search in Google Scholar

[82] K. P. Mehta and V. J. Badheka, “Effects of Tilt Angle on Properties of Dissimilar Friction Stir Welding Copper to Aluminum,” Mater. Manuf. Process. 31, no. January 2015, pp. 37 – 41, 2014.10.1080/10426914.2014.994754 Search in Google Scholar

[83] R. A. Prado, L. E. Murr, K. F. Soto, and J. C. McClure, “Self-optimization in tool wear for friction-stir welding of Al 6061+20% Al2O3MMC”, Mater. Sci. Eng. A 349 (1–2), pp. 156 – 165, 2003.10.1016/S0921-5093(02)00750-5 Search in Google Scholar

[84] K. R. Seighalani, M. K. B. Givi, A. M. Nasiri, and P. Bahemmat, “Investigations on the Effects of the Tool Material, Geometry, and Tilt Angle on Friction Stir Welding of Pure Titanium”, 19, no. October, pp. 955 – 962, 2010.10.1007/s11665-009-9582-8 Search in Google Scholar

[85] Z. W. Chen and S. Cui, “On the forming mechanism of banded structures in aluminium alloy friction stir welds”, 58, pp. 417 – 420, 2008.10.1016/j.scriptamat.2007.10.026 Search in Google Scholar

[86] W. International, L. M. Welding, R. Jl, and I. Technology, “Mechanical properties of friction stir welded 6061 aluminium”, 18 (2), pp. 95 – 102, 2004.10.1533/wint.2004.3217 Search in Google Scholar

[87] Barlas, Z., Ozsarac, U. “Effects of FSW Parameters on Joint Properties of AlMg3 Alloy,” Weld. J. 91 (1), pp. 16 – 22, 2012. Search in Google Scholar

[88] M. H. Tolephih, H. M. Mahmood, and H. H. Esam, “Effect of tool offset and tilt angle on weld strength of butt joint friction stir welded specimens of AA2024 aluminum alloy welded to commercial pure cupper”, 3 (4), 2013. Search in Google Scholar

[89] M. Elyasi, H. A. Derazkola, M. Hosseinzadeh, “Investigations of tool tilt angle on properties friction stir welding of A441 AISI to AA1100 aluminium,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 230 (7), pp. 1234–1241, 2016. Search in Google Scholar

[90] J. Wang, J. Su, R. S. Mishra, R. Xu, and J. A. Baumann, “Tool wear mechanisms in friction stir welding of Ti-6Al-4V alloy,” Wear 321, pp. 25 – 32, 2014.10.1016/j.wear.2014.09.010 Search in Google Scholar

[91] M. Zhao, Z. Zhou, Q. Ding, M. Zhong, and K. Arshad, “Effect of rare earth elements on the consolidation behavior and microstructure of tungsten alloys”, Int. J. Refract. Met. Hard Mater. 48, pp. 19 – 23, 2015.10.1016/j.ijrmhm.2014.07.014 Search in Google Scholar

[92] Klingensmith, A. A. R. M. S., Dupont, J. N. “Microstructural Characterization of a Double-Sided Friction Stir Weld on a Superaustenitic Stainless Steel”, Weld. Res., pp. 77 – 86, 2005. Search in Google Scholar

[93] A. P. Reynolds, W. Tang, M. Posada, and J. Deloach, “Friction stir welding of DH36 steel”, 8 (6), 2003.10.1179/136217103225009125 Search in Google Scholar

[94] C. D. Sorensen and A. L. Stahl, “Experimental Measurements of Load Distributions on Friction Stir Weld Pin Tools”, 38, no. June, pp. 451 – 459, 2007.10.1007/s11663-007-9041-6 Search in Google Scholar

[95] A. Arora, M. Mehta, A. De, and T. Debroy, “Load bearing capacity of tool pin during friction stir welding”, Int. J. Adv. Manuf. Technol. 61 (9–12), pp. 911 – 920, 2012.10.1007/s00170-011-3759-7 Search in Google Scholar

[96] H. J. Liu, J. C. Feng, H. Fujii, and K. Nogi, “Wear characteristics of a WC-Co tool in friction stir welding of AC4A+30 vol%SiCp composite”, Int. J. Mach. Tools Manuf., 45 (14), pp. 1635 – 1639, 2005. Search in Google Scholar

[97] Manvatkar, V. D., Arora, A., Debroy, T. “Neural network models of peak temperature, torque, traverse force, bending stress and maximum shear stress during friction stir welding”, 17 (6), pp. 460 – 466, 2012.10.1179/1362171812Y.0000000035 Search in Google Scholar

[98] Khandkar, M. Z. H., Khan, J. A., Reynolds, A. P. “Prediction of temperature distribution and thermal history during friction stir welding : input torque based model”, Science and Technology of Welding & Joining 8(3), pp. 165–174, 2003.10.1179/136217103225010943 Search in Google Scholar

[99] Trimble, D., Monaghan, J., O’Donnell, G. E., Donnell, G. E. O. “Force generation during friction stir welding of AA2024-T3,” CIRP Ann. - Manuf. Technol. 61 (1), pp. 9 – 12, 2012.10.1016/j.cirp.2012.03.024 Search in Google Scholar

[100] DebRoy, T., De, A., Bhadeshia, H. K. D. H., Manvatkar, V. D., Arora, A. “Tool durability maps for friction stir welding of an aluminium alloy”, Proc. R. Soc. A Math. Phys. Eng. Sci. 468 (2147), pp. 3552 – 3570, 2012. Search in Google Scholar

[101] de Saracibar, C. A. M. Chiumenti, Cervera, M., Dialami, N., and Seret, A. “Computational Modeling and Sub-Grid Scale Stabilization of Incompressibility and Convection in the Numerical Simulation of Friction Stir Welding Processes”, Arch. Comput. Methods Eng. 21 (1), pp. 3 – 37, 2014.10.1007/s11831-014-9094-z Search in Google Scholar

[102] Su, H., Song, C., Bachmann, M., M. Rethmeier, M. “Numerical modeling for the effect of pin profiles on thermal and material flow characteristics in friction stir welding”, J. Mater. 77, pp. 114 – 125, 2015.10.1016/j.matdes.2015.04.012 Search in Google Scholar

[103] Buchibabu, V., Reddy, G. M., De, A. “Probing torque, traverse force and tool durability in friction stir welding of aluminum alloys”, J. Mater. Process. Technol., 241, pp. 86 – 92, 2017.10.1016/j.jmatprotec.2016.11.008 Search in Google Scholar

[104] Kumar, S. “ScienceDirect Ultrasonic assisted friction stir processing of 6063 aluminum alloy”, Arch. Civ. Mech. Eng. 16 (3), pp. 473 – 484, 2016.10.1016/j.acme.2016.03.002 Search in Google Scholar

eISSN:
2450-5471
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Maschinenbau, Grundlagen des Maschinenbaus, Mechanik