Uneingeschränkter Zugang

Approximate Calculation of the Natural Oscillation Frequency of the Vibrating Table in Inter-Resonance Operation Mode


Zitieren

[1] Ruchynskyi, M., Nazarenko, M., Pereginets, I., Kobylianskyi, O., Kisała, P., Abenov, A., Amirgaliyeva, Z. “Simulation and development of energy-efficient vibration machines operating in resonant modes“, Przegląd Elektrotechniczny 1(4), pp. 62 – 66, 2019. DOI: 10.15199/48.2019.04.1110.15199/48.2019.04.11 Search in Google Scholar

[2] Lanets, O., Maistruk, P., Borovets, V., Derevenko, I. “Adjustment of parameters of three – mass interresonant vibrating machines with an inertial exciters“, Industrial Process Automation in Engineering and Instrumentation 53, pp. 13 – 22, 2019. DOI: 10.23939/istcipa2019.53.01310.23939/istcipa2019.53.013 Search in Google Scholar

[3] Lanets, O., Kachur, O. “Identification of ways to further improve of highly effective interresonance oscillatory systems“, Industrial Process Automation in Engineering and Instrumentation 51, pp. 62 – 65, 2017. Search in Google Scholar

[4] Lanets, O., Kachur, O., Borovets, V., Dmyterko, P., Derevenko, I., Zvarich, A. “Establishment of the original frequency of the continual section of the interreson research machine Rayleigh–Ritz method“, Industrial Process Automation in Engineering and Instrumentation 54, pp. 5 – 15, 2020. DOI: 10.23939/istcipa2020.54.00510.23939/istcipa2020.54.005 Search in Google Scholar

[5] Chikh, A. “Free vibration analysis of simply supported P-FGM nanoplate using a nonlocal four variables shear deformation plate theory“, Strojnícky časopis – Journal of Mechanical Engineering 69(4), pp. 9 – 24, 2019. DOI: 10.2478/scjme-2019-003910.2478/scjme-2019-0039 Search in Google Scholar

[6] Murin, J., Aminbaghai, M., Hrabovsky, J. “Elastostatic Analysis of the Spatial FGM Structures“, Strojnícky časopis – Journal of Mechanical Engineering 65(1), pp. 27 – 56, 2015. DOI: 10.1515/scjme-2016-000310.1515/scjme-2016-0003 Search in Google Scholar

[7] Taehyun, K., Usik, L. “Vibration Analysis of Thin Plate Structures Subjected to a Moving Force Using Frequency-Domain Spectral Element Method“, Shock and Vibration Vol. 2018, pp. 1 – 27, 2018. DOI: 10.1155/2018/190850810.1155/2018/1908508 Search in Google Scholar

[8] Sharma, A. K., Sharma, P., Chauhan, P. S., Bhadoria, S. S. “Study on Harmonic Analysis of Functionally Graded Plates Using Fem“, International Journal of Applied Mechanics and Engineering 23 (4), pp. 941 – 961, 2018. DOI: 10.2478/ijame-2018-005310.2478/ijame-2018-0053 Search in Google Scholar

[9] Zhao, X., Lee, Y. Y., Liew, K. M. “Free vibration analysis of functionally graded plates using the element-free kp-Ritz method“, Journal of Sound and Vibration 319 (3-5), pp. 918 – 939, 2009. DOI: 10.1016/j.jsv.2008.06.02510.1016/j.jsv.2008.06.025 Search in Google Scholar

[10] Saeed, A., Hassan, H., Wael E. “Vibration attenuation using functionally graded material“, World Academy of Science, Engineering and Technology 7(6), pp. 1111 – 1120, 2013. DOI: 10.5281/zenodo.1057221 Search in Google Scholar

[11] Reddy, J. N. “Theory and Analysis of Elastic Plates and Shells“, 2-nd ed., CRC Press, Boca Raton, USA, 2007. ISBN 9780849384158, DOI: 10.1201/978084938416510.1201/9780849384165 Search in Google Scholar

[12] Timoshenko S. P., Woinowsky-Krieger S. “Theory of Plates and Shells“, 2-nd ed., McGraw-Hill, New York, USA, 1959. ISBN 0-07-064779-8 Search in Google Scholar

[13] Bochkarev, A. “Influence of boundary conditions on stiffness properties of a rectangular nanoplate“, Procedia Structural Integrity 6, pp. 174 – 181, 2017. DOI: 10.1016/j.prostr.2017.11.02710.1016/j.prostr.2017.11.027 Search in Google Scholar

[14] Mahi, A., Adda Bedia, E.A., Tounsi, A. “A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates“, Applied Mathematical Modelling 39 (9), pp. 2489 – 2508, 2015. DOI: 10.1016/j.apm.2014.10.04510.1016/j.apm.2014.10.045 Search in Google Scholar

[15] Vescovini, R., Dozio, L., D’Ottavio, M., Polit, O. “On the application of the Ritz method to free vibration and buckling analysis of highly anisotropic plates“, Composite Structures 192, pp. 460 – 474, 2018. DOI: 10.1016/j.compstruct.2018.03.01710.1016/j.compstruct.2018.03.017 Search in Google Scholar

[16] Kozbur H., Shkodzinsky O., Kozbur I., Gashchyn N. “Prediction of the boundary states for thin-walled axisymmetric shells under internal pressure and tension loads“, Strojnícky časopis – Journal of Mechanical Engineering 70(1), pp. 57 – 68, 2020. DOI: 10.2478/scjme-2020-000610.2478/scjme-2020-0006 Search in Google Scholar

[17] Arvin, H. “The Flapwise Bending Free Vibration Analysis of Micro-rotating Timoshenko Beams Using the Differential Transform Method“, Journal of Vibration and Control 24 (20), pp. 4868 – 4884, 2018. DOI: 10.1177/107754631773670610.1177/1077546317736706 Search in Google Scholar

[18] Chen, Y., Zhang, J., Zhang, H. “Free vibration analysis of rotating tapered Timoshenko beams via variational iteration method“, Journal of Vibration and Control 23 (2), pp. 220 – 234, 2017. DOI: 10.1177/107754631557643110.1177/1077546315576431 Search in Google Scholar

[19] Konieczny, M., Achtelik, H., Gasiak, G. “Research of maximum stress zones in circular plates with loades concentrated force“, Strojnícky časopis – Journal of Mechanical Engineering 70 (2), pp. 77 – 90, 2020. DOI: 10.2478/scjme-2020-002210.2478/scjme-2020-0022 Search in Google Scholar

[20] Hlavaty, M., Starek, L., Musil, M., Hučko B. “Ultrasonic Defect Detection of Structural Plates Using Quasi-Rayleigh Waves“, Strojnícky časopis – Journal of Mechanical Engineering 67 (2), pp. 37 – 50, 2017. DOI: 10.1515/scjme-2017-001610.1515/scjme-2017-0016 Search in Google Scholar

[21] Ponomarev, S. “Strength calculations in mechanical engineering“, 3-rd ed., Mashgiz, Moscow, USSR, 1959. Search in Google Scholar

eISSN:
2450-5471
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Maschinenbau, Grundlagen des Maschinenbaus, Mechanik