Uneingeschränkter Zugang

Hydrodynamic Performance of the 3D Hydrofoil at the Coupled Oscillating Heave and Pitch Motions


Zitieren

[1] Wang, J., Liu, P., Chin, C., He, G. “Numerical investigation of auto-pitch wing-in-ground effect oscillating foil propulsor”, Applied Ocean Research 89, pp. 71 – 84, 2019. DOI: 10.1016/j.apor.2019.05.01510.1016/j.apor.2019.05.015 Search in Google Scholar

[2] Yan, Y., Avital, E., Williams, J., Cui, J. “CFD analysis for the performance of micro-vortex generator on aerofoil and vertical axis turbine”, Journal of Renewable and Sustainable Energy 11 (4), p. 043302, 2019. DOI: 10.1063/1.511042210.1063/1.5110422 Search in Google Scholar

[3] Abbasi, A., Ghassemi, H., Molyneux, D. “Numerical analysis of the hydrodynamic performance of HATST with different blade geometries”, American Journal of Civil Engineering and Architecture 6 (6), pp. 236 – 241, 2018. DOI: 10.12691/ajcea-6-6-2 Search in Google Scholar

[4] Abbasi, A., Ghassemi, H., Molyneux, D. “Power and thrust coefficients of the horizontal axis tidal stream turbine with different twist angles, blade numbers, and section profiles, Scientific”, Journals of the Maritime University of Szczecin 57 (129), pp. 11 – 20, 2019. DOI: 10.17402/321 Search in Google Scholar

[5] Lee, J., Choi, H., Kim, H.Y. “A scaling law for the lift of hovering insects”, Journal of Fluid Mechanics 782, pp. 479 – 490, 2015. DOI: 10.1017/jfm.2015.56810.1017/jfm.2015.568 Search in Google Scholar

[6] Shyy, W., Aono, H., Chimakurthi, S.K., Trizila, P., Kang, C.K., Cesnik, C.E., Liu, H. “Recent progress in flapping wing aerodynamics and aeroelasticity”, Progress in Aerospace Sciences 46 (7), pp. 284 – 327, 2010. DOI: 10.1016/j.paerosci.2010.01.00110.1016/j.paerosci.2010.01.001 Search in Google Scholar

[7] Lin, X., Wu, J., Zhang, T. “Performance investigation of a self-propelled foil with combined oscillating motion in stationary fluid”, Ocean Engineering 175, pp. 33 – 49, 2019. DOI: 10.1016/j.oceaneng.2019.02.00810.1016/j.oceaneng.2019.02.008 Search in Google Scholar

[8] Budiyanto, M. A., Syahrudin, M. F., Murdianto, M. A. “Investigation of the effectiveness of a stern foil on a patrol boat by experiment and simulation”, Cogent Engineering 7 (1), p. 1716925, 2020. DOI: 10.1080/23311916.2020.171692510.1080/23311916.2020.1716925 Search in Google Scholar

[9] Iverson, D., Rahimpour, M., Lee, W., Kiwata, T., Oshkai, P. “Effect of chordwise flexibility on propulsive performance of high inertia oscillating-foils”, Journal of fluids and structures 91, p. 102750, 2019. DOI: 10.1016/j.jfluidstructs.2019.10275010.1016/j.jfluidstructs.2019.102750 Search in Google Scholar

[10] Cleaver, D. J., Calderon, D. E., Wang, Z., Gursul, I. “Periodically plunging foil near a free surface”, Experiments in fluids 54 (3), pp. 1 – 18, 2013. DOI:10.1007/s00348-013-1491-910.1007/s00348-013-1491-9 Search in Google Scholar

[11] Martin, A. K., Anathakrishanan, P., Krishnankutty, P. “Ship hull wake effect on the hydrodynamic performance of a heave–pitch combined oscillating fin, Ships and Offshore Structures”, pp. 1 – 11, 2020. DOI: 10.1080/17445302.2020.177792510.1080/17445302.2020.1777925 Search in Google Scholar

[12] Thaweewat, N., Phoemsapthawee, S., Juntasaro, V. “Semi-active flapping foil for marine propulsion”, Ocean Engineering 147, pp. 556 – 564, 2018. DOI: 10.1016/j.oceaneng.2017.11.00810.1016/j.oceaneng.2017.11.008 Search in Google Scholar

[13] McKinney, W., DeLaurier, J. “The Wingmill: an oscillating-wing windmill”, Journal of energy 5 (2), pp. 109 – 115, 1981. DOI: 10.2514/3.6251010.2514/3.62510 Search in Google Scholar

[14] Kinsey, T., Dumas, G., Lalande, G., Ruel, J., Mehut, A., Viarouge, P., Lemay, J., Jean, Y. “Prototype testing of a hydrokinetic turbine based on oscillating hydrofoils”, Renewable energy 36 (6), pp. 1710 – 1718, 2011. DOI: 10.1016/j.renene.2010.11.03710.1016/j.renene.2010.11.037 Search in Google Scholar

[15] Kinsey, T., Dumas, G. “Parametric study of an oscillating airfoil in a power-extraction regime”, AIAA journal 46 (6), pp. 1318 – 1330, 2008. DOI: 10.2514/1.2625310.2514/1.26253 Search in Google Scholar

[16] Kinsey, T., Dumas, G. “Optimal operating parameters for an oscillating foil turbine at Reynolds number 500,000”, AIAA Journal 52 (9), pp. 1885 – 1895, 2014. DOI: 10.2514/1.J05270010.2514/1.J052700 Search in Google Scholar

[17] Kinsey, T., Dumas, G. “Computational fluid dynamics analysis of a hydrokinetic turbine based on oscillating hydrofoils”, Journal of fluids engineering 134 (2), 2012. DOI: 10.1115/1.400584110.1115/1.4005841 Search in Google Scholar

[18] Huxham, G. H., Cochard, S., Patterson, J. “Experimental parametric investigation of an oscillating hydrofoil tidal stream energy converter”, In Proceedings of 18th Australasian Fluid Mechanics Conference AFMC, Australasian Fluid Mechanics Society Launceston, Tasmania, pp. 3-7, 2012. Search in Google Scholar

[19] Harding, S. F., Payne, G. S., Bryden, I. G. “Generating controllable velocity fluctuations using twin oscillating hydrofoils: experimental validation”, Journal of fluid mechanics 750, pp. 113 - 123, 2014. DOI: 10.1017/jfm.2014.25710.1017/jfm.2014.257 Search in Google Scholar

[20] Shimizu, E., Isogai, K., Obayashi, S. “Multiobjective design study of a flapping wing power generator”, Journal of Fluids Engineering 130 (2), 2008. DOI: 10.1115/1.282958010.1115/1.2829580 Search in Google Scholar

[21] Simpson, B. J. “Experimental studies of flapping foils for energy extraction, (Doctoral dissertation, Massachusetts Institute of Technology), 2009. http://hdl.handle.net/1721.1/55283 Search in Google Scholar

[22] Jones, K., Platzer, M., Jones, K., Platzer, M. “Numerical computation of flapping-wing propulsion and power extraction”, In 35th Aerospace Sciences Meeting and Exhibit, 1997, January, p. 826. DOI: 10.2514/6.1997-82610.2514/6.1997-826 Search in Google Scholar

[23] Anderson, J. M., Streitlien, K., Barrett, D. S. “Triantafyllou, M.S. Oscillating foils of high propulsive efficiency”, Journal of Fluid mechanics 360, pp. 41 – 72, 1998. DOI: 10.1017/S002211209700839210.1017/S0022112097008392 Search in Google Scholar

[24] Dewey, P. A., Quinn, D. B., Boschitsch, B. M., Smits, A. J. “Propulsive performance of unsteady tandem hydrofoils in a side-by-side configuration”, Physics of Fluids 26 (4), p.041903, 2014. DOI: 10.1063/1.487102410.1063/1.4871024 Search in Google Scholar

[25] He, M., Veitch, B., Bose, N. “Colbourne, B., Liu, P. A three-dimensional wake impingement model and applications on tandem oscillating foils”, Ocean engineering 34 (8-9), pp. 1197 – 1210, 2007. DOI: 10.1016/j.oceaneng.2006.07.00210.1016/j.oceaneng.2006.07.002 Search in Google Scholar

[26] Giovannetti, L. M., Banks, J., Ledri, M., Turnock, S. R. and Boyd, S. W. “Toward the development of a hydrofoil tailored to passively reduce its lift response to fluid load”, Ocean Engineering 167, 2018. DOI: 10.1016/j.oceaneng.2018.08.01810.1016/j.oceaneng.2018.08.018 Search in Google Scholar

[27] Pourmahdavi, M., Liu, P. “Shallow water effect of tandem flapping foils on renewable energy production”, International Journal of Green Energy 16 (14), pp. 1353 – 1362, 2019. DOI: 10.1080/15435075.2019.167141010.1080/15435075.2019.1671410 Search in Google Scholar

[28] Ma, P., Wang, Y., Xie, Y., Han, J., Sun, G., Zhang, J. “Effect of wake interaction on the response of two tandem oscillating hydrofoils”, Energy Science & Engineering 7 (2), pp. 431 – 442, 2019. DOI: 10.1002/ese3.28610.1002/ese3.286 Search in Google Scholar

[29] He. G., Mo, W. Gao Y., Zhang Z., Wang J., Wang, W., Liu P, Ghassemi H. “Modification of effective angle of attack on hydrofoil power extraction”, Ocean engineering 240, 2021. DOI: 10.1016/j.oceaneng.2021.10991910.1016/j.oceaneng.2021.109919 Search in Google Scholar

[30] Pourmostafa, M., Ghassemi, H., Ghadimi,: P. “Boundary Element Method Applied to the 2D Foil with Oscillating Heave and Pitch Motions”, American Journal of Mechanical Engineering 8 (1), pp. 17 – 25, 2020. DOI: 10.12691/ajme-8-1-3 Search in Google Scholar

[31] Satwika, N. A., Hantoro, R., Sarwono, S., Nugroho, G. “The experimental investigation and numerical analysis on horizontal axis wind turbine with winglet and pitch variations”, Engineering Journal 23 (6), pp. 345 – 360, 2019. DOI: 10.4186/ej.2019.23.6.34510.4186/ej.2019.23.6.345 Search in Google Scholar

[32] Kutiš, V., Jakubec, J., Paulech, J., Gálik, G., Sedlár, T. “CFD analysis of downcomer of nuclear reactor VVER 440”, Strojnícky časopis – Journal of Mechanical Engineering 66 (2), pp. 55 – 62, 2016. DOI: 10.1515/scjme-2016-001810.1515/scjme-2016-0018 Search in Google Scholar

[33] Kapilan, N., Gowda, M. M., Manjunath, H. N. “Computational fluid dynamics analysis of an evaporative cooling system”, Strojnícky časopis – Journal of Mechanical Engineering 66 (2), pp.117 – 124, 2016. DOI: 10.1515/scjme-2016-002610.1515/scjme-2016-0026 Search in Google Scholar

[34] Xu, J., Sun, H., Tan, S. “Wake vortex interaction effects on energy extraction performance of tandem oscillating hydrofoils”, Journal of Mechanical Science and Technology 30 (9), pp. 4227 – 4237, 2016. DOI: 10.1007/s12206-016-0835-910.1007/s12206-016-0835-9 Search in Google Scholar

[35] Xu, J., Tan, S., Guan, D., Ali, R., Zhang, L. “Energy extraction performance of motion-constrained tandem oscillating hydrofoils”, Journal of Renewable and Sustainable Energy 9 (4), p. 044501, 2017. DOI: 10.1063/1.499409810.1063/1.4994098 Search in Google Scholar

eISSN:
2450-5471
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Maschinenbau, Grundlagen des Maschinenbaus, Mechanik