[
[1] McClure, J. C., Tang, T., Murr, L. E., Guo, X., Feng, Z. “A Thermal Model of Friction Stir Welding,” Trends in Welding Research, J. M. Vitek, et al., eds., Proceedings of the 5th International Conference, Pine Mountain, GA, June 1–5, pp. 590 – 595, 1998.
]Search in Google Scholar
[
[2] Tang, W., Guo, X., McClure, J. C., Murr, L. E., Nunes, A. “Heat Input and Temperature Distribution in Friction Stir Welding,” Journal of Materials Processing and Manufacturing Science, 7~2!, pp. 163–172, 1988. DOI:10.1106/55TF-PF2G-JBH2-1Q2B
]Search in Google Scholar
[
[3] Gould, J., Feng, Z. “Heat Flow Model for Friction Stir Welding of Aluminum Alloys,” Journal of Materials Processing & Manufacturing Science 7 (2), pp. 185 – 194, 1998. DOI:10.1106/648R-2CNE-2PD0-45L6
]Search in Google Scholar
[
[4] Chao, Y. J., Qi, X. “Heat Transfer and Thermo-Mechanical Analysis of Friction Stir Joining of AA6061-T6 Plates,” Proceedings of the First International Symposium on Friction Stir Welding, June 14–16, Rockwell Science Center, Thousand Oaks, California, 1999.
]Search in Google Scholar
[
[5] Chao, Y. J., Qi, X., Tang, W. “Heat Transfer in Friction Stir Welding – Experimental and Numerical Studies”, Journal of Manufacturing Science and Engineering 125, pp. 138 – 145, 2003. DOI:10.1115/1.1537741
]Search in Google Scholar
[
[6] Song, M., Kovacevic, R. “Thermal modeling of friction stir welding in a moving co-ordinate system and its validation”, International Journal of Machine Tools and Manufacture 43, pp. 605 – 615, 2003. DOI: 10.1016/S0890-6955(03)00022-1
]Search in Google Scholar
[
[7] Nandan, R., Roy, G. G., Debroy, T. “Numerical simulation of 3D heat transfer and plastic flow during friction stir welding”, Metallurgical and materials transactions A 37a, 1247 – 1259, 2006. DOI: 10.1179/174329306X107692
]Search in Google Scholar
[
[8] Qasim M. Doos., Muhsin, J. J., Sarmad, D. R. “Analysis of friction stir welds. Part I: Transient thermal simulation using moving heat source”, First Regional Conference of Eng. Sci. NUCEJ Spatial issue 11(3), pp. 429 – 437, 2008.
]Search in Google Scholar
[
[9] Rajamanickam, N., Balusamy, V., Thyla, P. R., Vignesh, G. H. “Numerical simulation of thermal history and residual stresses in friction stirwelding of Al 2014-T6”, Journal of Scientific and Industrial Research 68, 192 – 198, 2009.
]Search in Google Scholar
[
[10] Ameen, H. A., Abood, A. H., Thamer, N. S. “Theoretical and experimental investigation of friction stir welding for copper alloy”, AL-Qadisiya Journal For Engineering Sciences 6 (3), pp. 332 – 351, 2013.
]Search in Google Scholar
[
[11] Pashazadeh, H., Teimournezhad, J., Masoumi, A. “ Numerical investigation on the mechanical, thermal, metallurgical andmaterial flow characteristics in friction stir welding of copper sheets with experimental verification”, Materials & Design 55, 619 – 632, 2014. DOI: 10.1016/j.matdes.2013.09.028
]Search in Google Scholar
[
[12] Chen, C. M., Kovacevic, R. “Finite element modeling of friction stirs welding-thermal and thermo-mechanical analysis”, Machine Tools & Manufacture 43, pp. 1319 – 1326, 2003. DOI: 10.1016/S0890-6955(03)00158-5
]Search in Google Scholar
[
[13] Jančo, R., Écsi, L., Élesztős, P. “FSW Numerical simulation of aluminium plates by sysweld - Part I”, Strojnícky časopis – Journal of Mechanical Engineering 66 (1), 47 – 52, 2016. DOI: 10.1515/scjme-2016-0010
]Search in Google Scholar
[
[14] Jančo, R., Écsi, L., Élesztős, P. “FSW Numerical simulation of aluminium plates by sysweld - Part II”, Strojnícky časopis – Journal of Mechanical Engineering 66 (2), 29 – 36, 2016. DOI: 10.1515/scjme-2016-0016
]Search in Google Scholar
[
[15] Élesztős P., Jančo R., Voštiar V. “Optimization of welding process using a genetic algorithm”, Strojnícky časopis – Journal of Mechanical Engineering. 68 (2), 17 – 24, 2018. DOI: 10.2478/scjme-2018-0014
]Search in Google Scholar