Uneingeschränkter Zugang

Development of a Mycelium-Based Thermal Insulation Material

,  und   
09. Juni 2025

Zitieren
COVER HERUNTERLADEN

Islam S., Bhat G. Environmentally-friendly thermal and acoustic insulation materials from recycled textiles. J. Environ. Manage. 2019:251:109536. https://doi.org/10.1016/j.jenvman.2019.109536 Search in Google Scholar

Platt S. L., et al. Sustainable bio & waste resources for thermal insulation of buildings. Constr. Build. Mater. 2023:366:130030. https://doi.org/10.1016/j.conbuildmat.2022.130030 Search in Google Scholar

Pignatta G., Vadiee A., Bartocci P., Al-Qahtani S., Koç M., Isaifan R. J. Mycelium-Based Thermal Insulation for Domestic Cooling Footprint Reduction: A Review. Sustainability 2023:15(17):13217. https://doi.org/10.3390/su151713217 Search in Google Scholar

Alaneme K. K., et al. Mycelium based composites: A review of their bio-fabrication procedures, material properties and potential for green building and construction applications . Alexandria Eng. J. 2023:83:234–250. https://doi.org/10.1016/j.aej.2023.10.012 Search in Google Scholar

Volk R., et al. Life cycle assessment of mycelium-based composite materials. Resour. Conserv. Recycl. 2024:205:107579. https://doi.org/10.1016/j.resconrec.2024.107579 Search in Google Scholar

Robertson O., Høgdal F., McKay L., Lenau T. Fungal Future: A review of mycelium biocomposites as an ecological alternative insulation material. Proceedings of NordDesign 2020, Lyngby, Denmark, 2020. https://doi.org/10.35199/NORDDESIGN2020.18 Search in Google Scholar

Sreerag N. K., Kashyap P., Shilpa V. S., Thakur M., Goksen G. Recent Advances on Mycelium Based BioComposites: Synthesis, Strains, Lignocellulosic Substrates, Production Parameters. Polym. Rev. 2024. https://doi.org/10.1080/15583724.2024.2423949 Search in Google Scholar

Camilleri E., Narayan S., Lingam D., Blundell R. Mycelium-based composites: An updated comprehensive overview. Biotechnol. Adv. 2025:108517. https://doi.org/10.1016/j.biotechadv.2025.108517 Search in Google Scholar

Alemu D., Tafesse M., Mondal A. K. Mycelium-Based Composite: The Future Sustainable Biomaterial. Int. J. Biomater. 2022. https://doi.org/10.1155/2022/8401528 Search in Google Scholar

Madusanka C., et al. A review of recent advances in fungal mycelium based composites. Discov. Mater. 2024:4(1). https://doi.org/10.1007/s43939-024-00084-8 Search in Google Scholar

Cai J., Han J., Ge F., Lin Y., Pan J., Ren A. Development of impact-resistant mycelium-based composites (MBCs) with agricultural waste straws. Constr. Build. Mater. 2023:389:131730. https://doi.org/10.1016/j.conbuildmat.2023.131730 Search in Google Scholar

Devi K. B., Malakar R., Kumar A., Sarma N., Jha D. K. Ecofriendly utilization of lignocellulosic wastes: mushroom cultivation and value addition. Value-Addition Agri-Food Ind. Waste through Enzym. Technol. 2023:237–254. https://doi.org/10.1016/B978-0-323-89928-4.00016-X Search in Google Scholar

Muñoz H. et al. Applicability of Paper and Pulp Industry Waste for Manufacturing Mycelium-Based Materials for Thermoacoustic Insulation. Sustainability 2024:16(18):8034. https://doi.org/10.3390/su16188034 Search in Google Scholar

Aiduang W., et al. A Review Delving into the Factors Influencing Mycelium-Based Green Composites (MBCs) Production and Their Properties for Long-Term Sustainability Targets. Biomimetics 2024:9(6):337. https://doi.org/10.3390/biomimetics9060337 Search in Google Scholar

Houette T., Maurer C., Niewiarowski R., Gruber P. Growth and Mechanical Characterization of Mycelium-Based Composites towards Future Bioremediation and Food Production in the Material Manufacturing Cycle. Biomimetics 2022:7(3):103. https://doi.org/10.3390/biomimetics7030103 Search in Google Scholar

Hu Y., et al. Effects and Mechanism of the Mycelial Culture Temperature on the Growth and Development of Pleurotus ostreatus (Jacq.) P. Kumm. Horticulturae 2023:9(1)95. https://doi.org/10.3390/horticulturae9010095 Search in Google Scholar

Yang L., Park D., Qin Z. Material Function of Mycelium-Based Bio-Composite: A Review. Front. Mater. 2021:8:1–17. https://doi.org/10.3389/fmats.2021.737377 Search in Google Scholar

Huang Z., Wei Y., Hadigheh S. A. Variations in the Properties of Engineered Mycelium-Bound Composites (MBCs) under Different Manufacturing Conditions. Buildings 2024:14(1):155. https://doi.org/10.3390/buildings14010155 Search in Google Scholar

Voutetaki M. E., Mpalaskas A. C. Natural Fiber-reinforced Mycelium Composite for Innovative and Sustainable Construction Materials. Fibers 2024:12(7):57. https://doi.org/10.3390/fib12070057 Search in Google Scholar

Schritt H., Vidi S., Pleissner D. Spent mushroom substrate and sawdust to produce mycelium-based thermal insulation composites. J. Clean. Prod. 2021:313. https://doi.org/10.1016/j.jclepro.2021.127910 Search in Google Scholar

Philippoussis A. N. Production of mushrooms using agro-industrial residues as substrates. Biotechnol. Agro-Industrial Residues Util. Util. Agro-Residues 2009:163–196. https://doi.org/10.1007/978-1-4020-9942-7_9 Search in Google Scholar

Kulshreshtha S. Recent Advances in Mushroom Cultivation Technology and its Application (Volume 1). 2021. https://doi.org/10.22271/bs.book.20 Search in Google Scholar

Lelivelt R. J. J. The mechanical possibilities of mycelium materials. Eindhoven Univ. Technol. 2015:1–82. [Online]. Available: http://dl.acm.org/citation.cfm?doid=3341162.3343808. Search in Google Scholar

Petcu C., et al. Research on Thermal Insulation Performance and Impact on Indoor Air Quality of Cellulose-Based Thermal Insulation Materials. Materials (Basel). 2023:16(15). https://doi.org/10.3390/ma16155458. Search in Google Scholar

Lekavicius V., Shipkovs P., Ivanovs S., Rucins A. Thermo-insulation properties of hemp-based products. Latv. J. Phys. Tech. Sci. 2015:52(1):38–51. https://doi.org/10.1515/lpts-2015-0004 Search in Google Scholar

Hamrouni I., Jalili H., Ouahbi T., Taibi S., Jamei M., Mabrouk A. Thermal properties of a raw earth-flax fibers building material. Constr. Build. Mater. 2024:423:135828. https://doi.org/10.1016/j.conbuildmat.2024.135828 Search in Google Scholar

Marín-Calvo N., González-Serrud S., James-Rivas A. Thermal insulation material produced from recycled materials for building applications: cellulose and rice husk-based material. Front. Built Environ. 2023:9:271317. https://doi.org/10.3389/fbuil.2023.1271317 Search in Google Scholar

Cigarruista Solís L., Chen Austin M., Deago E., López G., Marin-Calvo N. Rice Husk-Based Insulators: Manufacturing Process and Thermal Potential Assessment. Materials (Basel) 2024:17(11). https://doi.org/10.3390/ma17112589 Search in Google Scholar

Rodríguez Neira K., et al. Assessment of Elaboration and Performance of Rice Husk-Based Thermal Insulation Material for Building Applications. Buildings 2024:14(6). https://doi.org/10.3390/buildings14061720 Search in Google Scholar

Bianco L., Pollo R., Serra V. Wood Fiber vs Synthetic Thermal Insulation for Roofs Energy Retrofit: A Case Study in Turin, Italy. Energy Procedia 2017:111:347–356. https://doi.org/10.1016/j.egypro.2017.03.196 Search in Google Scholar

Veitmans K., Grinfelds U. Research for Rural Development Wood fibre insulation material. Annual 22nd International Scientific Conference. Jelgava, 2016. Search in Google Scholar

What is Thermal Conductivity of Glass Wool. [Online]. [Accessed 05.12.2024]. Available: https://www.huameiworld.com/news/what-is-thermal-conductivity-of-glass-wool.html Search in Google Scholar

RW Slabs. 2023. [Online]. [Accessed 05.12.2024]. Available: https://www.rockwool.com/siteassets/rwuk/downloads/datasheets/rw-slabs.pdf Search in Google Scholar

Expanded Polystyrene (EPS Foam): Uses, Structure & Properties. [Online]. [Accessed 05.12.2024]. Available: https://omnexus.specialchem.com/selection-guide/expanded-polystyrene-eps-foam-insulation Search in Google Scholar

Expanded Polystyrene (EPS). [Online]. [Accessed 05.12.2024]. Available: https://www.bpf.co.uk/plastipedia/polymers/expanded-and-extruded-polystyrene-eps-xps.aspx Search in Google Scholar

He P., Ruan H., Wang C., Lu H. Mechanical Properties and Thermal Conductivity of Thermal Insulation Board Containing Recycled Thermosetting Polyurethane and Thermoplastic. Polymers 2021:13(24):4411. https://doi.org/10.3390/polym13244411 Search in Google Scholar

De Luca Bossa F., et al. Greener nanocomposite polyurethane foam based on sustainable polyol and natural fillers: Investigation of chemico-physical and mechanical properties. Materials (Basel) 2020:13(1). https://doi.org/10.3390/ma13010211 Search in Google Scholar

Phenolic foam insulation – Designing Buildings. [Online]. [Accessed 05.12.2024]. Available: https://www.designingbuildings.co.uk/wiki/Phenolic_foam_insulation Search in Google Scholar

Aksit M., Zhao C., Klose B., Kreger K., Schmidt H. W., Altstädt V. Extruded polystyrene foams with enhanced insulation and mechanical properties by a benzene-trisamide-based additive. Polymers (Basel) 2019:11(2):268. https://doi.org/10.3390/polym11020268 Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biologie, andere