This work is licensed under the Creative Commons Attribution 4.0 International License.
Benhelal E., Shamsaei E., Rashid M. I. Challenges against CO2 abatement strategies in cement industry: A review. Journal of Environmental Sciences 2021:104:84–101. https://doi.org/10.1016/j.jes.2020.11.020Search in Google Scholar
Nie S., Zhou J., Yang F., Lan M., Li J., Zhang Z., Chen Z., Xu M., Li H., Sanjayan J.G. Analysis of theoretical carbon dioxide emissions from cement production: Methodology and application. Journal of Cleaner Production 2022:334:130270. https://doi.org/10.1016/j.jclepro.2021.130270Search in Google Scholar
Bumanis G., Vaiciukyniene D. Mechanical Properties of Alkali Activated Material Based on Red Clay and Silica Gel Precursor. Environmental and Climate Technologies 2021:25(1):931–943. https://doi.org/10.2478/rtuect-2021-0070Search in Google Scholar
Tan Y., Wu C., Yu H., Li Y., Wen J. Review of reactive magnesia-based cementitious materials: Current developments and potential applicability. Journal of Building Engineering 2021:40:102342. https://doi.org/10.1016/j.jobe.2021.102342Search in Google Scholar
Pakere I., Freimanis R., Alena-Ozolina S., Asaris P., Demurtas A., Gorner M., Yearwood J. Cost-Optimal Policy Strategies for Reaching Energy Efficiency Targets and Carbon Neutrality. Environmental and Climate Technologies 2023:27(1):999–1014. https://doi.org/10.2478/rtuect-2023-0073Search in Google Scholar
Beltrán-Velamazán C., Gómez-Gil M., Monzón-Chavarrías M., Espinosa-Fernández A., López-Mesa B. Harnessing Open European Data for a Data-Driven Approach to Enhancing Decarbonization Measurement in the Built Environment. Environmental and Climate Technologies 2024:28(1):776–793. https://doi.org/10.2478/rtuect-2024-0060Search in Google Scholar
Urwongse L., Sorrell C. The System MgO–MgCl2–H2O at 23°C. Journal of the American Ceramic Society 1980:63(9–10):501–504. https://doi.org/10.1111/J.1151-2916.1980.TB10752.XSearch in Google Scholar
Battiston T., Comboni D., Verri G., Hanfland M., Gatta G. D. Anisotropic compressional behaviour of the Sorel cement F5-phase (Mg3(OH)5Cl·4H2O). Construction and Building Materials 2023:366:130162. https://doi.org/10.1016/j.conbuildmat.2022.130162Search in Google Scholar
Xu M., Chen X., Han L. Effect of tartaric acid on the early hydration process and water resistance of magnesium oxychloride cement. Journal of Building Engineering 2023:66:105838. https://doi.org/10.1016/j.jobe.2023.105838Search in Google Scholar
Huang X., Wang S., Wu Y., Wang J., Zuo Y. Preparation and characterization of high-strength and water-resistant waterborne epoxy resin/magnesium oxychloride composite based on cross-linked network structure. Construction and Building Materials 2021:285:122902. https://doi.org/10.1016/j.conbuildmat.2021.122902Search in Google Scholar
Miryuk O., Liseitsev Y., Fediuk R. Influence of Iron-Containing Components on the Curing and Hardening Properties of Magnesium Oxychloride Binders. Journal of Materials in Civil Engineering 2024:36(12):04024413. https://doi.org/10.1061/JMCEE7.MTENG-17856Search in Google Scholar
Xu K., Xi J., Guo Y., Dong S. Effects of a new modifier on the water-resistance of magnesite cement tiles. Solid State Sciences 2012:14(1):10–14. https://doi.org/10.1016/j.solidstatesciences.2011.08.009Search in Google Scholar
Ustinova Y.V., Nikiforova T.P. Effect of various additives on the mechanical properties of magnesia binder based materials. Procedia Engineering 2015:111:807–814. https://doi.org/10.1016/j.proeng.2015.07.150Search in Google Scholar
Zhang T., Guo Q., Chen X., Cheeseman C., Wang H., Chang J. Unlocking the role of silica gel in enhancing mechanical properties and water resistance of magnesium oxysulfate cement. Cement and Concrete Composites 2025:157:105941. https://doi.org/10.1016/j.cemconcomp.2025.105941Search in Google Scholar
Guan Y., Hu Z., Zhang Z., Chang J., Bi W., Cheeseman C.R., Zhang T. Effect of hydromagnesite addition on the properties and water resistance of magnesium oxysulfate (MOS) cement. Cement and Concrete Research 2021:143:106387. https://doi.org/10.1016/j.cemconres.2021.106387Search in Google Scholar
Li Y., Li Z., Pei H.,Yu H. The influence of FeSO4 and KH2PO4 on the performance of magnesium oxychloride cement. Construction and Building Materials 2016:102:233–238. https://doi.org/10.1016/j.conbuildmat.2015.10.186Search in Google Scholar
Sheng G., Zheng L., Li P., Sun B., Li X., Zuo Y. The water resistance and mechanism of FeSO4 enhancing bamboo scraps/magnesium oxychloride cement composite. Construction and Building Materials 2022:317:125942. https://doi.org/10.1016/j.conbuildmat.2021.125942Search in Google Scholar
Du H., Li J., Ni W., Hou C., Liu W. The hydration mechanism of magnesium oxysulfate cement prepared by magnesium desulfurization byproducts. Journal of Materials Research and Technology 2022:17:1211–1220. https://doi.org/10.1016/j.jmrt.2022.01.070Search in Google Scholar
Tang S., Wei C., Cai R., Huang J., Chen E., Yuan J. In situ monitoring of pore structure of magnesium oxysulfate cement paste: Effect of MgSO4/H2O ratio. Journal of Industrial and Engineering Chemistry 2019:83:387–400. https://doi.org/10.1016/j.jiec.2019.12.012Search in Google Scholar
Erdman S. V., Gapparova K. M., Khudyakova T. M., Tomshina A. V. Magnesia binder preparation from local natural and technogenic raw materials. Procedia Chemistry 2014:10:310–313. https://doi.org/10.1016/j.proche.2014.10.052Search in Google Scholar
Zhang N., Yu H., Gong W., Liu T., Wang N., Tan Y., Wu C. Effects of low- and high-calcium fly ash on the water resistance of magnesium oxysulfate cement. Construction and Building Materials 2020:230:116951. https://doi.org/10.1016/j.conbuildmat.2019.116951Search in Google Scholar
Gu K., Chen B., Yu H., Zhang N., Bi W., Guan Y. Characterization of magnesium-calcium oxysulfate cement prepared by replacing MgSO4 in magnesium oxysulfate cement with untreated desulfurization gypsum. Cement and Concrete Composites 2021:121:104091. https://doi.org/10.1016/j.cemconcomp.2021.104091Search in Google Scholar
He P., Poon C. S., Tsang D.C.W. Comparison of glass powder and pulverized fuel ash for improving the water resistance of magnesium oxychloride cement. Cement and Concrete Composites 2018:86:98–109. https://doi.org/10.1016/j.cemconcomp.2017.11.010Search in Google Scholar
Miryuk O. Magnesia Composites Formation as a Result of Furniture Production Wood Waste Processing. Environmental and Climate Technologies 2022:26:836–847. https://doi.org/10.2478/rtuect-2022-0063Search in Google Scholar
Li C., Meng X., Zhu J. Corrosion resistance of magnesium phosphate cement under long-term immersion in different solutions. Journal of Building Engineering 2023:66:105879. https://doi.org/10.1016/j.jobe.2023.105879Search in Google Scholar
Motaleb A. K. Z. M., Pranta A. D., Repon Md. R., Karim F. E. Preparation and characterization of MgO-based composites: Analysis of moisture, corrosion, and fungal resistance, and mechanical properties. Construction and Building Materials 2024:447:137926. https://doi.org/10.1016/j.conbuildmat.2024.137926Search in Google Scholar
Yu C., Wu Q., Ma, H., Yang N., Darkwah K. K., Akbar M. Study on Corrosion Resistance of Magnesium Phosphate Cement-based Coating Modified by Metakaolin. KSCE Journal of Civil Engineering 2024:28:302–314. https://doi.org/10.1007/s12205-023-0623-xSearch in Google Scholar
Averina G., Koshelev V., Kramar L. Increasing the Resistance of Chloromagnesian Composites to Cracking Under Prolonged Water Saturation. Lecture Notes in Civil Engineering 2023:308:168–177. https://doi.org/10.1007/978-3-031-21120-1_17Search in Google Scholar
Miryuk O. Properties of magnesium composite materials based on technogenic raw materials. ARPN Journal of Engineering and Applied Sciences 2018:13(2):545–558.Search in Google Scholar
Guo T., Wang H., Yang H., Cai X., Ma Q., Yang S. The mechanical properties of magnesium oxysulfate cement enhanced with 517 phase magnesium oxysulfate whiskers. Construction and Building Materials 2017:150:844–850. https://doi.org/10.1016/j.conbuildmat.2017.06.024Search in Google Scholar
Chen X., Chen B., Chang J., Xu X., Sun E., Wang S., Guan Y. Improved mechanical strength of magnesium oxysulfate cement using ferric sulfate. Journal of Building Engineering 2023:67:106007. https://doi.org/10.1016/j.jobe.2023.106007Search in Google Scholar
Zhang X., Ge S., Wang H., Chen R. Effect of 5-phase seed crystal on the mechanical properties and microstructure of magnesium oxychloride cement. Construction and Building Materials 2017:150:409–417. https://doi.org/10.1016/j.conbuildmat.2017.05.211Search in Google Scholar
Yu K., Guo Y., Zhang Y.X., Soe K. Magnesium oxychloride cement-based strain-hardening cementitious composite: Mechanical property and water resistance. Construction and Building Materials 2020:261:119970. https://doi.org/10.1016/j.conbuildmat.2020.119970Search in Google Scholar
Zhang M., Yu H., Ma H., Wu C., Zhu B., Li Y., Li L., Kang Y., Ding Z. Effect of 5·1·8 whiskers on the mechanical properties and microstructure of magnesium oxychloride cement. Composites Part B: Engineering 2025:292:112095. https://doi.org/10.1016/j.compositesb.2024.112095Search in Google Scholar
Zhao J., Xu J., Cui C., Yu C., Chang J., Hu Z., Bi W. Stability and phase transition of 5·1·7 phase in alkaline solutions. Construction and Building Materials 2020:258:119683. https://doi.org/10.1016/j.conbuildmat.2020.119683Search in Google Scholar