Uneingeschränkter Zugang

Corrosion Resistance of Magnesia Binders in Aggressive Liquids

  
05. Juni 2025

Zitieren
COVER HERUNTERLADEN

Benhelal E., Shamsaei E., Rashid M. I. Challenges against CO2 abatement strategies in cement industry: A review. Journal of Environmental Sciences 2021:104:84–101. https://doi.org/10.1016/j.jes.2020.11.020 Search in Google Scholar

Nie S., Zhou J., Yang F., Lan M., Li J., Zhang Z., Chen Z., Xu M., Li H., Sanjayan J.G. Analysis of theoretical carbon dioxide emissions from cement production: Methodology and application. Journal of Cleaner Production 2022:334:130270. https://doi.org/10.1016/j.jclepro.2021.130270 Search in Google Scholar

Bumanis G., Vaiciukyniene D. Mechanical Properties of Alkali Activated Material Based on Red Clay and Silica Gel Precursor. Environmental and Climate Technologies 2021:25(1):931–943. https://doi.org/10.2478/rtuect-2021-0070 Search in Google Scholar

Tan Y., Wu C., Yu H., Li Y., Wen J. Review of reactive magnesia-based cementitious materials: Current developments and potential applicability. Journal of Building Engineering 2021:40:102342. https://doi.org/10.1016/j.jobe.2021.102342 Search in Google Scholar

Pakere I., Freimanis R., Alena-Ozolina S., Asaris P., Demurtas A., Gorner M., Yearwood J. Cost-Optimal Policy Strategies for Reaching Energy Efficiency Targets and Carbon Neutrality. Environmental and Climate Technologies 2023:27(1):999–1014. https://doi.org/10.2478/rtuect-2023-0073 Search in Google Scholar

Beltrán-Velamazán C., Gómez-Gil M., Monzón-Chavarrías M., Espinosa-Fernández A., López-Mesa B. Harnessing Open European Data for a Data-Driven Approach to Enhancing Decarbonization Measurement in the Built Environment. Environmental and Climate Technologies 2024:28(1):776–793. https://doi.org/10.2478/rtuect-2024-0060 Search in Google Scholar

Urwongse L., Sorrell C. The System MgO–MgCl2–H2O at 23°C. Journal of the American Ceramic Society 1980:63(9–10):501–504. https://doi.org/10.1111/J.1151-2916.1980.TB10752.X Search in Google Scholar

Battiston T., Comboni D., Verri G., Hanfland M., Gatta G. D. Anisotropic compressional behaviour of the Sorel cement F5-phase (Mg3(OH)5Cl·4H2O). Construction and Building Materials 2023:366:130162. https://doi.org/10.1016/j.conbuildmat.2022.130162 Search in Google Scholar

Xu M., Chen X., Han L. Effect of tartaric acid on the early hydration process and water resistance of magnesium oxychloride cement. Journal of Building Engineering 2023:66:105838. https://doi.org/10.1016/j.jobe.2023.105838 Search in Google Scholar

Huang X., Wang S., Wu Y., Wang J., Zuo Y. Preparation and characterization of high-strength and water-resistant waterborne epoxy resin/magnesium oxychloride composite based on cross-linked network structure. Construction and Building Materials 2021:285:122902. https://doi.org/10.1016/j.conbuildmat.2021.122902 Search in Google Scholar

Miryuk O., Liseitsev Y., Fediuk R. Influence of Iron-Containing Components on the Curing and Hardening Properties of Magnesium Oxychloride Binders. Journal of Materials in Civil Engineering 2024:36(12):04024413. https://doi.org/10.1061/JMCEE7.MTENG-17856 Search in Google Scholar

Xu K., Xi J., Guo Y., Dong S. Effects of a new modifier on the water-resistance of magnesite cement tiles. Solid State Sciences 2012:14(1):10–14. https://doi.org/10.1016/j.solidstatesciences.2011.08.009 Search in Google Scholar

Ustinova Y.V., Nikiforova T.P. Effect of various additives on the mechanical properties of magnesia binder based materials. Procedia Engineering 2015:111:807–814. https://doi.org/10.1016/j.proeng.2015.07.150 Search in Google Scholar

Zhang T., Guo Q., Chen X., Cheeseman C., Wang H., Chang J. Unlocking the role of silica gel in enhancing mechanical properties and water resistance of magnesium oxysulfate cement. Cement and Concrete Composites 2025:157:105941. https://doi.org/10.1016/j.cemconcomp.2025.105941 Search in Google Scholar

Guan Y., Hu Z., Zhang Z., Chang J., Bi W., Cheeseman C.R., Zhang T. Effect of hydromagnesite addition on the properties and water resistance of magnesium oxysulfate (MOS) cement. Cement and Concrete Research 2021:143:106387. https://doi.org/10.1016/j.cemconres.2021.106387 Search in Google Scholar

Li Y., Li Z., Pei H.,Yu H. The influence of FeSO4 and KH2PO4 on the performance of magnesium oxychloride cement. Construction and Building Materials 2016:102:233–238. https://doi.org/10.1016/j.conbuildmat.2015.10.186 Search in Google Scholar

Sheng G., Zheng L., Li P., Sun B., Li X., Zuo Y. The water resistance and mechanism of FeSO4 enhancing bamboo scraps/magnesium oxychloride cement composite. Construction and Building Materials 2022:317:125942. https://doi.org/10.1016/j.conbuildmat.2021.125942 Search in Google Scholar

Du H., Li J., Ni W., Hou C., Liu W. The hydration mechanism of magnesium oxysulfate cement prepared by magnesium desulfurization byproducts. Journal of Materials Research and Technology 2022:17:1211–1220. https://doi.org/10.1016/j.jmrt.2022.01.070 Search in Google Scholar

Tang S., Wei C., Cai R., Huang J., Chen E., Yuan J. In situ monitoring of pore structure of magnesium oxysulfate cement paste: Effect of MgSO4/H2O ratio. Journal of Industrial and Engineering Chemistry 2019:83:387–400. https://doi.org/10.1016/j.jiec.2019.12.012 Search in Google Scholar

Erdman S. V., Gapparova K. M., Khudyakova T. M., Tomshina A. V. Magnesia binder preparation from local natural and technogenic raw materials. Procedia Chemistry 2014:10:310–313. https://doi.org/10.1016/j.proche.2014.10.052 Search in Google Scholar

Zhang N., Yu H., Gong W., Liu T., Wang N., Tan Y., Wu C. Effects of low- and high-calcium fly ash on the water resistance of magnesium oxysulfate cement. Construction and Building Materials 2020:230:116951. https://doi.org/10.1016/j.conbuildmat.2019.116951 Search in Google Scholar

Gu K., Chen B., Yu H., Zhang N., Bi W., Guan Y. Characterization of magnesium-calcium oxysulfate cement prepared by replacing MgSO4 in magnesium oxysulfate cement with untreated desulfurization gypsum. Cement and Concrete Composites 2021:121:104091. https://doi.org/10.1016/j.cemconcomp.2021.104091 Search in Google Scholar

He P., Poon C. S., Tsang D.C.W. Comparison of glass powder and pulverized fuel ash for improving the water resistance of magnesium oxychloride cement. Cement and Concrete Composites 2018:86:98–109. https://doi.org/10.1016/j.cemconcomp.2017.11.010 Search in Google Scholar

Miryuk O. Magnesia Composites Formation as a Result of Furniture Production Wood Waste Processing. Environmental and Climate Technologies 2022:26:836–847. https://doi.org/10.2478/rtuect-2022-0063 Search in Google Scholar

Li C., Meng X., Zhu J. Corrosion resistance of magnesium phosphate cement under long-term immersion in different solutions. Journal of Building Engineering 2023:66:105879. https://doi.org/10.1016/j.jobe.2023.105879 Search in Google Scholar

Motaleb A. K. Z. M., Pranta A. D., Repon Md. R., Karim F. E. Preparation and characterization of MgO-based composites: Analysis of moisture, corrosion, and fungal resistance, and mechanical properties. Construction and Building Materials 2024:447:137926. https://doi.org/10.1016/j.conbuildmat.2024.137926 Search in Google Scholar

Yu C., Wu Q., Ma, H., Yang N., Darkwah K. K., Akbar M. Study on Corrosion Resistance of Magnesium Phosphate Cement-based Coating Modified by Metakaolin. KSCE Journal of Civil Engineering 2024:28:302–314. https://doi.org/10.1007/s12205-023-0623-x Search in Google Scholar

Averina G., Koshelev V., Kramar L. Increasing the Resistance of Chloromagnesian Composites to Cracking Under Prolonged Water Saturation. Lecture Notes in Civil Engineering 2023:308:168–177. https://doi.org/10.1007/978-3-031-21120-1_17 Search in Google Scholar

Miryuk O. Properties of magnesium composite materials based on technogenic raw materials. ARPN Journal of Engineering and Applied Sciences 2018:13(2):545–558. Search in Google Scholar

Guo T., Wang H., Yang H., Cai X., Ma Q., Yang S. The mechanical properties of magnesium oxysulfate cement enhanced with 517 phase magnesium oxysulfate whiskers. Construction and Building Materials 2017:150:844–850. https://doi.org/10.1016/j.conbuildmat.2017.06.024 Search in Google Scholar

Chen X., Chen B., Chang J., Xu X., Sun E., Wang S., Guan Y. Improved mechanical strength of magnesium oxysulfate cement using ferric sulfate. Journal of Building Engineering 2023:67:106007. https://doi.org/10.1016/j.jobe.2023.106007 Search in Google Scholar

Zhang X., Ge S., Wang H., Chen R. Effect of 5-phase seed crystal on the mechanical properties and microstructure of magnesium oxychloride cement. Construction and Building Materials 2017:150:409–417. https://doi.org/10.1016/j.conbuildmat.2017.05.211 Search in Google Scholar

Yu K., Guo Y., Zhang Y.X., Soe K. Magnesium oxychloride cement-based strain-hardening cementitious composite: Mechanical property and water resistance. Construction and Building Materials 2020:261:119970. https://doi.org/10.1016/j.conbuildmat.2020.119970 Search in Google Scholar

Zhang M., Yu H., Ma H., Wu C., Zhu B., Li Y., Li L., Kang Y., Ding Z. Effect of 5·1·8 whiskers on the mechanical properties and microstructure of magnesium oxychloride cement. Composites Part B: Engineering 2025:292:112095. https://doi.org/10.1016/j.compositesb.2024.112095 Search in Google Scholar

Zhao J., Xu J., Cui C., Yu C., Chang J., Hu Z., Bi W. Stability and phase transition of 5·1·7 phase in alkaline solutions. Construction and Building Materials 2020:258:119683. https://doi.org/10.1016/j.conbuildmat.2020.119683 Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biologie, andere