This work is licensed under the Creative Commons Attribution 4.0 International License.
Horn S., Mölsä K. M., Sorvari J., Tuovila H., Heikkilä P. Environmental sustainability assessment of a polyester T-shirt – Comparison of circularity strategies. Science of The Total Environment 2023:884:163821. https://doi.org/10.1016/j.scitotenv.2023.163821Search in Google Scholar
European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions EU. Strategy for Sustainable and Circular Textiles. Brussels, 30.3.2022.Search in Google Scholar
Stone C., Windsor F. M., Munday M., Durance I. Natural or synthetic – how global trends in textile usage threaten freshwater environments. Science of The Total Environment 2020:718:134689. https://doi.org/10.1016/j.scitotenv.2019.134689Search in Google Scholar
Sohn J., Nielsen K. S., Birkved M., Joanes T., Gwozdz W. The environmental impacts of clothing: Evidence from United States and three European countries. Sustainable Production and Consumption 2021:27:2153–2164. https://doi.org/10.1016/j.spc.2021.05.013Search in Google Scholar
Jana P. Challenges in the Traditional Fashion and Textile Supply Chain. In Lean Supply Chain Management in Fashion and Textile Industry, in Textile Science and Clothing Technology. Springer, Singapore, 2022. https://doi.org/10.1007/978-981-19-2108-7_2Search in Google Scholar
Kahoush M., Kadi N. Towards sustainable textile sector: Fractionation and separation of cotton/polyester fibers from blended textile waste. Sustainable Materials and Technologies 2022:34:e00513. https://doi.org/10.1016/j.susmat.2022.e00513Search in Google Scholar
Juanga-Labayen J. P., Labayen I. V., Yuan Q. A Review on Textile Recycling Practices and Challenges. Textiles 2022:2(1):174–188. https://doi.org/10.3390/textiles2010010Search in Google Scholar
Karthik T., Gopalakrishnan D. Environmental Analysis of Textile Value Chain: An Overview. In Roadmap to Sustainable Textiles and Clothing, in Textile Science and Clothing Technology. Springer, Singapore, 2014. https://doi.org/10.1007/978-981-287-110-7_6Search in Google Scholar
Palacios-Mateo C., Van Der Meer Y., Seide G. Analysis of the polyester clothing value chain to identify key intervention points for sustainability. Environmental Sciences Europe 2021:33(1):2. https://doi.org/10.1186/s12302-020-00447-xSearch in Google Scholar
Ellen MacArthur Foundation. A new textiles economy: Redesigning fashion’s future. 2017.Search in Google Scholar
Wang S., Salmon S. Progress toward Circularity of Polyester and Cotton Textiles. Sustainable Chemistry 2022:3(3):376–403. https://doi.org/10.3390/suschem3030024Search in Google Scholar
Zandberga A., Kalnins S. N., Gusca J. Decision-making Algorithm for Waste Recovery Options. Review on Textile Waste Derived Products. Environmental and Climate Technologies 2023:27(1):137–149. https://doi.org/10.2478/rtuect-2023-0011Search in Google Scholar
Wagner V., Keil M., Lang-Koetz C., Viere T. Screening life cycle assessment of medical workwear and potential mitigation scenarios. Sustainable Production and Consumption 2023:40:602–612. https://doi.org/10.1016/j.spc.2023.07.026Search in Google Scholar
Gonçalves A., Silva C. Looking for sustainability scoring in apparel: A review on environmental footprint, social impacts and transparency. Energies 2021:14(11):3032. https://doi.org/10.3390/en14113032Search in Google Scholar
Munasinghe P., Druckman A., Dissanayake D. G. K. A systematic review of the life cycle inventory of clothing. Journal of Cleaner Production 2021:320:128852. https://doi.org/10.1016/j.jclepro.2021.128852Search in Google Scholar
Van Der Velden N. M., Patel M. K., Vogtländer J. G. LCA benchmarking study on textiles made of cotton, polyester, nylon, acryl, or elastane. Int J Life Cycle Assess 2014:19(2):331–356. https://doi.org/10.1007/s11367-013-0626-9Search in Google Scholar
Zhang S., Xu C., Xie R., Yu H., Sun M., Li F. Environmental assessment of fabric wet processing from gate-to-gate perspective: Comparative study of weaving and materials. Science of The Total Environment 2023:857:159495. https://doi.org/10.1016/j.scitotenv.2022.159495Search in Google Scholar
Sandin G., Peters G. M. Environmental impact of textile reuse and recycling – A review. Journal of Cleaner Production 2018:184:353–365. https://doi.org/10.1016/j.jclepro.2018.02.266Search in Google Scholar
Barahmand Z., Eikeland M. S. Life Cycle Assessment under Uncertainty: A Scoping Review. World 2022:3(3):692–717. https://doi.org/10.3390/world3030039Search in Google Scholar
Hauschild M. Z., Rosenbaum R. K., Olsen S. I. Eds. Life Cycle Assessment: Theory and Practice. Cham: Springer International Publishing, 2018. https://doi.org/10.1007/978-3-319-56475-3Search in Google Scholar
Roos S., Jönsson C., Posner S., Arvidsson R., Svanström M. An inventory framework for inclusion of textile chemicals in life cycle assessment. Int J Life Cycle Assess 2019:24(5):838–847. https://doi.org/10.1007/s11367-018-1537-6Search in Google Scholar
Anh Dao Tran T., Thauvin E., Ferraz F., Drean E., Schacher L., Dominique A. Comparative Life Cycle Assessment of Dental Scrubs Made of Polyester/Cotton and 100% Cotton. In Advances in Applied Research on Textile and Materials – IX, vol. 17, Msahli S., Debbabi F., (Eds.), in Springer Proceedings in Materials. Cham: Springer International Publishing 2022:320–327. https://doi.org/10.1007/978-3-031-08842-1_51Search in Google Scholar
Snigdha M. Hiloidhari, Bandyopadhyay S. Environmental footprints of disposable and reusable personal protective equipment ‒ a product life cycle approach for body coveralls. Journal of Cleaner Production 2023:394:136166. https://doi.org/10.1016/j.jclepro.2023.136166Search in Google Scholar
Narendra A. S. G. Accelerated Bleaching of Cotton Material with Hydrogen Peroxide. J Textile Sci Eng 2013:03:04. https://doi.org/10.4172/2165-8064.1000140Search in Google Scholar
Voglhuber-Slavinsky A. et al. Setting life cycle assessment (LCA) in a future-oriented context: the combination of qualitative scenarios and LCA in the agri-food sector. European Journal of Futures Research 2022:10(1):15. https://doi.org/10.1186/s40309-022-00203-9Search in Google Scholar
Benitez A., Wulf C., Steubing B., Geldermann J. Scenario-based LCA for assessing the future environmental impacts of wind offshore energy: An exemplary analysis for a 9.5-MW wind turbine in Germany. Energy, Sustainability and Society 2024:14(1):49. https://doi.org/10.1186/s13705-024-00474-zSearch in Google Scholar
Rossi F., Zuffi C., Parisi M. L., Fiaschi D., Manfrida G. Comparative scenario-based LCA of renewable energy technologies focused on the end-of-life evaluation. Journal of Cleaner Production 2023:405:136931. https://doi.org/10.1016/j.jclepro.2023.136931Search in Google Scholar
Dolge K., Blumberga D. What are the Linkages between Climate and Economy? Bibliometric Analysis. Environmental and Climate Technologies 2022:26(1):616–629. https://doi.org/10.2478/rtuect-2022-0047Search in Google Scholar
Mohadab M. E., Bouikhalene B., Safi S. Bibliometric method for mapping the state of the art of scientific production in Covid-19. Chaos, Solitons & Fractals 2020:139:110052. https://doi.org/10.1016/j.chaos.2020.110052Search in Google Scholar
Introduction to the Database. Ecoinvent. [Online]. [Accessed: 15.04.2024]. Available: https://support.ecoinvent.org/introduction-to-the-databaseSearch in Google Scholar
Product Category Rules. The International EPD® System. [Online]. [Accessed: 22.10.2024]. Available: https://www.environdec.com/product-category-rules-pcr/the-pcrSearch in Google Scholar
International Organization for Standardization. Environmental Management – Life Cycle Assessment – Principles and Framework (ISO Standard No. 14040:2006). ISO 14040:2006, 2006. [Online]. [Accessed: 22.10.2024]. Available: https://www.iso.org/standard/37456.htmlSearch in Google Scholar
International Organization for Standardization. Environmental Management — Life Cycle Assessment — Requirements and Guidelines (ISO Standard No. 14044:2006), 14044:2006, 2006. [Online]. [Accessed: 22.10.2024]. Available: https://www.iso.org/standard/38498.htmlSearch in Google Scholar
European Commission. Joint Research Centre, and Institute for Environment and Sustainability. International Reference Life Cycle Data System (ILCD) Handbook -General guide for Life Cycle Assessment, Detailed guidance. Publications Office of the European Union, 2010.Search in Google Scholar
Jewell J., Koffler C., Murphy S. LCA Update of Cotton Fiber and Fabric Life Cycle Inventory. Cotton Incorporated. 2017. [Online]. [Accessed: 25.01.2024]. Available: http://resource.cottoninc.com/LCA/2016-LCA-Full-Report-Update.pdfSearch in Google Scholar
Subramanian K., Chopra S. S., Cakin E., Li X., Lin C. S. K. Environmental life cycle assessment of textile bio-recycling – valorizing cotton-polyester textile waste to pet fiber and glucose syrup. Resources, Conservation and Recycling 2020:161:104989. https://doi.org/10.1016/j.resconrec.2020.104989Search in Google Scholar
Zhao M. et al. Virtual carbon and water flows embodied in global fashion trade – a case study of denim products. Journal of Cleaner Production 2021:303:127080. https://doi.org/10.1016/j.jclepro.2021.127080Search in Google Scholar
Zhang Y. et al. Improved design for textile production process based on life cycle assessment. Clean Techn Environ Policy 2018:20(6):1355–1365. https://doi.org/10.1007/s10098-018-1572-9Search in Google Scholar
Sara B., Tarantini M. Life Cycle Assessment of cotton/polyester fabric in B05 company. Nov. 2003. Accessed: Feb. 15, 2024. [Online]. [Accessed 22.10.2024]. Available: http://spring.bologna.enea.it/towefo/results_public_area/D20%20LCA/D20%20LCA_B05.pdfSearch in Google Scholar
European Commission. Joint Research Centre. Best available techniques (BAT) reference document for the textiles industry: Industrial Emissions Directive 2010/75/EU (integrated pollution prevention and control). LU: Publications Office, 2023.Search in Google Scholar
Foisal A. B. M., Ahmed M. T. Dyeing of Polyester/Cotton Blended Woven Fabric in One Bath. SEU Journal of Science and Engineering 2017:11(2). [Online]. Available: https://seu.edu.bd/seujse/downloads/vol_11_no_2_dec_2017/01_Vol11No2Dec2017.pdfSearch in Google Scholar
Hossain I., Moniruzzaman Md., Maniruzzaman Md., Jalil M. A. Investigation of the effect of different process variables on color and physical properties of viscose and cotton knitted fabrics. Heliyon 2021:7(8):e07735. https://doi.org/10.1016/j.heliyon.2021.e07735Search in Google Scholar
Wang X., Jiang J., Gao W. Reviewing textile wastewater produced by industries: characteristics, environmental impacts, and treatment strategies. Water Science and Technology 2022:85(7):2076–2096. https://doi.org/10.2166/wst.2022.088Search in Google Scholar
PCR 2022:04 Fabrics (1.0.1). The International EPD® System, Aug. 2022. Accessed: Oct. 23, 2024. [Online]. Available: https://api.environdec.com/api/v1/EPDLibrary/Files/b5abeb35-253e-49df-14ac-08da85915ae2/DataSearch in Google Scholar
Ige O. E., Olanrewaju O. A., Duffy K. J., Collins O. C. Environmental Impact Analysis of Portland Cement (CEM1) Using the Midpoint Method. Energies 2022:15(7):2708. https://doi.org/10.3390/en15072708Search in Google Scholar