Zitieren

[1] European Commission, Communication From The Commission To The European Parliament And The Council. Sustainable Carbon Cycles., Brussels, 2021. Search in Google Scholar

[2] Dolge K., Blumberga D. Key Factors Influencing the Achievement of Climate Neutrality Targets in the Manufacturing Industry: LMDI Decomposition Analysis. Energies 2021:14(23):8006. https://doi.org/10.3390/EN1423800610.3390/en14238006 Search in Google Scholar

[3] Kuramochi T., Ramírez A., Turkenburg W., Faaij A. Effect of CO2 capture on the emissions of air pollutants from industrial processes. Int. J. Greenh. Gas Control 2012:10:310–328. https://doi.org/10.1016/j.ijggc.2012.05.02210.1016/j.ijggc.2012.05.022 Search in Google Scholar

[4] Gardarsdottir S. O., Normann F., Andersson K., Johnsson F. Process evaluation of CO2 capture in three industrial case studies. Energy Procedia 2014:63:6565–6575. https://doi.org/10.1016/j.egypro.2014.11.69310.1016/j.egypro.2014.11.693 Search in Google Scholar

[5] Kim J., Yu S., Yun S. T., Kim K. H., Shinn Y. J., Chae G. CO2 leakage detection in the near-surface above natural CO2-rich water aquifer using soil gas monitoring. Int. J. Greenh. Gas Control 2019:88:261–271. https://doi.org/10.1016/j.ijggc.2019.06.01510.1016/j.ijggc.2019.06.015 Search in Google Scholar

[6] Cheng J., Dong H., Zhang H., Yuan L., Li H., Yue L., Hua J., Zhou J. Improving CH4 production and energy conversion from CO2 and H2 feedstock gases with mixed methanogenic community over Fe nanoparticles. Bioresour. Technol. 2020:314:123799. https://doi.org/10.1016/j.biortech.2020.12379910.1016/j.biortech.2020.12379932673781 Search in Google Scholar

[7] Yang Z. Z., He L. N., Gao J., Liu A. H., Yu B. Carbon dioxide utilization with C-N bond formation: Carbon dioxide capture and subsequent conversion. Energy Environ. Sci. 2012:5:6602–6639. https://doi.org/10.1039/c2ee02774g10.1039/c2ee02774g Search in Google Scholar

[8] Murcia Valderrama M. A., van Putten R. J., Gruter G. J. M. The potential of oxalic – and glycolic acid based polyesters (review). Towards CO2 as a feedstock (Carbon Capture and Utilization – CCU). Eur. Polym. J. 2019: 119:445–468. https://doi.org/10.1016/j.eurpolymj.2019.07.03610.1016/j.eurpolymj.2019.07.036 Search in Google Scholar

[9] Muthuraj R., Mekonnen T. Recent progress in carbon dioxide (CO2) as feedstock for sustainable materials development: Co-polymers and polymer blends. Polymer 2018:145:348–373. https://doi.org/10.1016/j.polymer.2018.04.07810.1016/j.polymer.2018.04.078 Search in Google Scholar

[10] Bai H., Cheng T., Li S., Zhou Z., Yang H., Li J., Xie M., Ye J., Ji Y., Li Y., Zhou Z., Sun S., Zhang B., Peng H. Controllable CO adsorption determines ethylene and methane productions from CO2 electroreduction. Sci. Bull. 2020:66(1):62–68. https://doi.org/10.1016/j.scib.2020.06.02310.1016/j.scib.2020.06.023 Search in Google Scholar

[11] Universities team up with plan to develop low-carbon aviation fuel from recycled CO2 and bio-waste. Renew. Energy Focus 2016:17(2):50–55. https://doi.org/10.1016/j.ref.2016.02.00810.1016/j.ref.2016.02.008 Search in Google Scholar

[12] Adhikari B. M., Truong T., Prakash S., Bansal N., Bhandari B. Impact of incorporation of CO2 on the melting, texture and sensory attributes of soft-serve ice cream. Int. Dairy J. 2020:109:104789. https://doi.org/10.1016/j.idairyj.2020.10478910.1016/j.idairyj.2020.104789 Search in Google Scholar

[13] Di Caprio M. R., Brondi C., Di Maio E., Mosciatti T., Cavalca S., Parenti V., Iannace S., Mensitieri G., Musto P. Polyurethane synthesis under high-pressure CO2, a FT-NIR study. Eur. Polym. J. 2019:115:364–374. https://doi.org/10.1016/j.eurpolymj.2019.03.04710.1016/j.eurpolymj.2019.03.047 Search in Google Scholar

[14] Shijian L., Dongya Z., Quanmin Z. CO2 absorber coupled with double pump CO2 capture technology for coal-fired flue gas. Energy Procedia 2018:154:163–170. https://doi.org/10.1016/j.egypro.2018.11.02710.1016/j.egypro.2018.11.027 Search in Google Scholar

[15] European Comission, Technical Guidance Handbook: Setting up and implementing results-based carbon farming mechanisms in the EU (2021), Brussel, 2021. Search in Google Scholar

[16] Gancone A., Pubule J., Blumberga D. Valorization methodology for agriculture sector climate change mitigation measures. Environ. Clim. Technol. 2021:25(1):944–954. https://doi.org/10.2478/rtuect-2021-007110.2478/rtuect-2021-0071 Search in Google Scholar

[17] European Comission. The European Green Deal. Search in Google Scholar

[18] Sujatha M. P., Lathika C., Smitha J. K. Sustainable and efficient utilization of weed biomass for carbon farming and productivity enhancement: A simple, rapid and ecofriendly approach in the context of climate change scenario, Environ. Challenges. 2021:4:100150. https://doi.org/10.1016/J.ENVC.2021.10015010.1016/j.envc.2021.100150 Search in Google Scholar

[19] Van Eck N. J., Waltman L. VOSviewer Manual version 1.6.10, CWTS Meaningful Metrics. 2019. Search in Google Scholar

[20] LVĢMC. 2020. gadā iesniegtās siltumnīcefekta gāzu inventarizācijas kopsavilkums. (Summary of the greenhouse gas inventory submitted in 2020). ([Online]. [Accessed: 18 January 2021]. Available: https://www.meteo.lv/fs/CKFinderJava/userfiles/files/Vide/Klimats/Majas_lapai_LVGMC_2020_seginvkopsavilkums.pdf (In Latvian). Search in Google Scholar

[21] IPCC, IPCC – Task Force on National Greenhouse Gas Inventories, 2. 2006. [Online]. [Accessed: 20 April 2020]. Available: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ Search in Google Scholar

[22] CSP. Latvia’s energy balance in 2017. (Latvijas energobilance 2017. gadā). 2018. [Online]. [Accessed: 20 April 2020]. Available: www.csb.gov.lv (In Latvian). Search in Google Scholar

[23] Allen J. John Deere develops fully electric, autonomous tractor | Industrial Vehicle Technology International. [Online]. [Accessed: 20 April 2020]. Available: https://www.ivtinternational.com/news/agriculture/john-deeredevelops-fully-electric-autonomous-tractor.html Search in Google Scholar

[24] Blanco-Canqui H. Crop Residue Removal for Bioenergy Reduces Soil Carbon Pools: How Can We Offset Carbon Losses? Bioenergy Res. 2013:6:358–371. https://doi.org/10.1007/s12155-012-9221-310.1007/s12155-012-9221-3 Search in Google Scholar

[25] Šarauskis E., Buragiene S., Masilionyte L., Romaneckas K., Avižienyte D., Sakalauskas A. Energy balance, costs and CO2 analysis of tillage technologies in maize cultivation. Energy 2014:69:227–235. https://doi.org/10.1016/j.energy.2014.02.09010.1016/j.energy.2014.02.090 Search in Google Scholar

[26] Hoffman E., Cavigelli M. A., Camargo G., Ryan M., Ackroyd V. J., Richard T. L., Mirsky S. Energy use and greenhouse gas emissions in organic and conventional grain crop production: Accounting for nutrient inflows. Agric. Syst. 2018:162:89–96. https://doi.org/10.1016/j.agsy.2018.01.02110.1016/j.agsy.2018.01.021 Search in Google Scholar

[27] Augšņu degradācijas procesu, augsni saudzējošu lauksaimniecības paņēmienu un ar augsni saistītu politikas pasākumu sasaiste (Linking soil degradation processes, soil-conserving agricultural practices and soil-related policies). [Online]. [Accessed: May 1, 2020]. Available: https://esdac.jrc.ec.europa.eu/projects/SOCO/FactSheets/LVFactSheet.pdf Search in Google Scholar

[28] Sørensen C. G., Nielsen V. Operational analyses and model comparison of machinery systems for reduced tillage, Biosyst. Eng. 2005:92(2):143–155. https://doi.org/10.1016/j.biosystemseng.2005.06.01410.1016/j.biosystemseng.2005.06.014 Search in Google Scholar

[29] Saldukaitė L., Šarauskis E., Lekavičienė K., Savickas D. Predicting energy efficiency and greenhouse gases reduction potential under different tillage management and farm size scenarios for winter wheat production. Sustain. Energy Technol. Assessments 2020:42:42100841. https://doi.org/10.1016/j.seta.2020.10084110.1016/j.seta.2020.100841 Search in Google Scholar

[30] Tabatabaeefar A., Emamzadeh H., Varnamkhasti M. G., Rahimizadeh R., Karimi M. Comparison of energy of tillage systems in wheat production. Energy 2009:34(1):41–45. https://doi.org/10.1016/j.energy.2008.09.02310.1016/j.energy.2008.09.023 Search in Google Scholar

[31] Miltiņš R. Swedbank Business Network. Jaunās tehnoloģijas lauksaimniecībā = domāšanas maiņa. (New technologies in agriculture = change in thinking). [Online]. [Accessed January 18, 2021]. Available: https://businessnetwork.lv/ievads/izaugsme/raimonds-miltins-lauksaimniecibas-tehnologijas-53066 (In Latvian). Search in Google Scholar

[32] Bumbiere K., Pubule J., Blumberga D. What Will Be the Future of Biogas Sector? Environ. Clim. Technol. 2021:25(1):295–305. https://doi.org/10.2478/RTUECT-2021-002110.2478/rtuect-2021-0021 Search in Google Scholar

[33] Latvijas Vides, Ģeoloģijas un Meteoroloģijas Centrs. 2022. gada siltumnīcefekta gāzu inventarizācijas kopsavilkums. Versija: Iesniegts ANO Vispārējai konvencijai par klimata pārmaiņām. (Center of Environment, Geology and Meteorology of Latvia. 2022 Greenhouse Gas Inventory Summary. Version: Submitted to the UN Framework Convention on Climate Change). [Online]. [Accessed: 15.04.2022}. Available: https://videscentrs.lvgmc.lv/files/Klimats/SEG_emisiju_un_ETS_monitorings/Zinojums_par_klimatu/Iesniegto_SEG_prognozu_kopsavilkumi/Majas_lapai_LVGMC_2021_segprognozes.pdf Search in Google Scholar

[34] Indzere Z., Kubule A., Zihare L., Vamza I., Blumberga D. Analysis of Bioeconomy Affeting Factors - Climate Change and Production. Env. Clim. Technol. 2021:25(1):1293–1304. https://doi.org/10.2478/rtuect-2021-009810.2478/rtuect-2021-0098 Search in Google Scholar

[35] Yong Z. J., Bashir M. J. K., Hassan M. S. Biogas and biofertilizer production from organic fraction municipal solid waste for sustainable circular economy and environmental protection in Malaysia. Sci. Total Environ. 2021:776:145961. https://doi.org/10.1016/j.scitotenv.2021.14596110.1016/j.scitotenv.2021.14596133640552 Search in Google Scholar

[36] Timonen K., Sinkko T., Luostarinen S., Tampio E., Joensuu K. LCA of anaerobic digestion: Emission allocation for energy and digestate. J. Clean. Prod. 2019:235:1567–1579. https://doi.org/10.1016/j.jclepro.2019.06.08510.1016/j.jclepro.2019.06.085 Search in Google Scholar

[37] Gancone A., Bumbiere K., Pubule J., Blumberga D. Sustainable biogas application in energy sector. IEEE. 2020. 10.1109/RTUCON51174.2020.931659310.1109/RTUCON51174.2020.9316593 Search in Google Scholar

[38] Wilken D., Strippel F., Hofmann F., Maciejczyk M., Klinkmüller L., Wagner L., Bontempo G., Münch J., Scheidl S., Conton M., Deremince B., Walter R., Zetsche N., Findeisen C. Biogas to Biomethane, Unido. 2017. [Online]. [Accessed February 23, 2021]. Available: https://issuu.com/fachverband.biogas/docs/btb Search in Google Scholar

[39] Blumberga D., Dzene I., Al Sedi T., Rucs D., Prasls H., Ketners M. Finstervalders T., Folka S. Biogas: Handbook. 2009. https://ortus.rtu.lv/science/en/publications/5847 Search in Google Scholar

[40] Brémond U., Bertrandias A., Steyer J. P., Bernet N., Carrere H. A vision of European biogas sector development towards 2030: Trends and challenges. J. Clean. Prod. 2021:287. https://doi.org/10.1016/j.jclepro.2020.12506510.1016/j.jclepro.2020.125065 Search in Google Scholar

[41] Latvijas Biogāzes asociācija. (Latvian association of biogas). [Online]. [Accessed February 23, 2021]. Available: http://www.latvijasbiogaze.lv/ (In Latvian). Search in Google Scholar

[42] Meyer A. K. P., Ehimen E. A., Holm-Nielsen J. B. Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production. Biomass and Bioenergy 2018:111:154–164. https://doi.org/10.1016/j.biombioe.2017.05.01310.1016/j.biombioe.2017.05.013 Search in Google Scholar

[43] Kaldis F., Cysneiros D., Day J., Karatzas KAG., Chatzifragkou A. Anaerobic Digestion of Steam-Exploded Wheat Straw and Co-Digestion Strategies for Enhanced Biogas Production. App. Sc. Basel. 2020:10:22.10.3390/app10228284 Search in Google Scholar

[44] Muizniece I., Zihare L., Pubule J., Blumberga D. Circular Economy and Bioeconomy Interaction Development as Future for Rural Regions. Case Study of Aizkraukle Region in Latvia. Environ. Clim. Technol. 2019:23(3):129–146. https://doi.org/10.2478/rtuect-2019-008410.2478/rtuect-2019-0084 Search in Google Scholar

[45] Lauka D., Slisane D., Ievina L., Muizniece I., Blumberga D. When Bioeconomy Development Becomes a Biomass Energy Competitor. Environ. Clim. Technol. 2019:23(3):347–359. https://doi.org/10.2478/rtuect-2019-010010.2478/rtuect-2019-0100 Search in Google Scholar

[46] Zihare L., Spalvins K., Blumberga D. Multi criteria analysis for products derived from agro-industrial by-products. Energy Procedia 2018:147:452–457. https://doi.org/10.1016/j.egypro.2018.07.04510.1016/j.egypro.2018.07.045 Search in Google Scholar

[47] Esteves E. M. M., Herrera A. M. N., Esteves V. P. P., Do R. V. Morgado C. Life cycle assessment of manure biogas production: A review. Journal of Cleaner Production 2019:219:411–423. https://doi.org/10.1016/j.jclepro.2019.02.09110.1016/j.jclepro.2019.02.091 Search in Google Scholar

[48] EMEP. EEA. Atskaites ziņojums un tehniski ekonomiskais pamatojums ‘Biogāzes attīstības iespējas Madonas rajonā’. (Reference report and technical-economic justification ‘Biogas development opportunities in Madona district’) 2019. (In Latvian). Search in Google Scholar

[49] Cavinato C., Fatone F., Bolzonella D., Pavan P. Thermophilic anaerobic co-digestion of cattle manure with agrowastes and energy crops: Comparison of pilot and full scale experiences. Bioresour. Technol 2010:101(2):545–550. https://doi.org/10.1016/j.biortech.2009.08.04310.1016/j.biortech.2009.08.04319747821 Search in Google Scholar

[50] Shah F. A., Mahmood Q., Rashid N., Pervez A., Raja I. A., Shah M. M. Co-digestion, pretreatment and digester design for enhanced methanogenesis. Renew. Sustain. Energy Rev. 2015:42:627–642. https://doi.org/10.1016/j.rser.2014.10.05310.1016/j.rser.2014.10.053 Search in Google Scholar

[51] Bumbiere K., Gancone A., Pubule J., Kirsanovs V., Vasarevicius S., Blumberga D. Ranking of Bioresources for Biogas Production. Environ. Clim. Technol. 2020:24(1):368–377. https://doi.org/10.2478/RTUECT-2020-002110.2478/rtuect-2020-0021 Search in Google Scholar

[52] Biogāzes enerģija. LAEF. (Biogas energy). [Online]. [Accessed: January 3, 2020]. Available: https://www.laef.lv/lv/biogaze/ Search in Google Scholar

[53] Baumber A., Metternicht G., Cross R., Ruoso L. E., Cowie A. L., Waters C. Promoting co-benefits of carbon farming in Oceania: Applying and adapting approaches and metrics from existing market-based schemes. Ecosyst. Serv. 2019:39:100982. https://doi.org/10.1016/J.ECOSER.2019.10098210.1016/j.ecoser.2019.100982 Search in Google Scholar

[54] EC courtesy translation LV NECP NATIONAL ENERGY AND CLIMATE PLAN OF LATVIA 2021–2030, n.d. Search in Google Scholar

[55] Decarbonisation Pathways – Eurelectric – Powering People. [Online]. [Accessed: March 4, 2021]. Available: https://www.eurelectric.org/decarbonisation-pathways/ Search in Google Scholar

[56] Scarlat N., Dallemand J. F., Fahl F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018:129:457–472. https://doi.org/10.1016/j.renene.2018.03.00610.1016/j.renene.2018.03.006 Search in Google Scholar

[57] Yu Q., Liu R., Li K., Ma R. A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China. Renewable and Sustainable Energy Reviews 2019:107:51–58. https://doi.org/10.1016/j.rser.2019.02.02010.1016/j.rser.2019.02.020 Search in Google Scholar

[58] Fernández-González J. M., Martín-Pascual J., Zamorano M. Biomethane injection into natural gas network vs composting and biogas production for electricity in Spain: An analysis of key decision factors. Sustain. Cities Soc. 2020:60:102242. https://doi.org/10.1016/j.scs.2020.10224210.1016/j.scs.2020.102242 Search in Google Scholar

[59] Hosseinipour S. A., Mehrpooya M. Comparison of the biogas upgrading methods as a transportation fuel. Renew. Energy 2019:130:641–655. https://doi.org/10.1016/j.renene.2018.06.08910.1016/j.renene.2018.06.089 Search in Google Scholar

[60] Li H., Mehmood D., Thorin E., Yu Z. Biomethane Production Via Anaerobic Digestion and Biomass Gasification. Energy Procedia 2017:105:1172–1177. https://doi.org/10.1016/j.egypro.2017.03.49010.1016/j.egypro.2017.03.490 Search in Google Scholar

[61] Khan I. Waste to biogas through anaerobic digestion: Hydrogen production potential in the developing world - A case of Bangladesh. Int. J. Hydrogen Energy 2020:45(32):15951–15962. https://doi.org/10.1016/j.ijhydene.2020.04.03810.1016/j.ijhydene.2020.04.038 Search in Google Scholar

[62] Kim C., Kim J., Joo S., Bu Y., Liu M., Cho J., Kim G. Efficient CO2 Utilization via a Hybrid Na- CO2 System Based on CO2 Dissolution. IScience 2018:9:278–285. https://doi.org/10.1016/j.isci.2018.10.02710.1016/j.isci.2018.10.027625836530447646 Search in Google Scholar

[63] Lecker B., Illi L., Lemmer A., Oechsner H. Biological hydrogen methanation – A review. Bioresour. Technol. 2017:245:1220–1228. https://doi.org/10.1016/j.biortech.2017.08.17610.1016/j.biortech.2017.08.17628893503 Search in Google Scholar

[64] Liquid Hydrogen Outline. [Online]. [Accessed: August 27, 2020]. Available: https://www.idealhy.eu/index.php?page=lh2_outline Search in Google Scholar

[65] Encyclopedia of Soils in the Environment. ScienceDirect. [Online]. [Accessed: April 13, 2022]. Available: https://www-sciencedirect-com.resursi.rtu.lv/referencework/9780123485304/encyclopedia-of-soils-in-theenvironment Search in Google Scholar

[66] Buschmann A. H., Chopin T., Neori A., Halling C., Troell M., Hernández-González M. C., Aranda C. Ecological engineering in aquaculture: towards a better waste management in Western World mariculture. Encycl. Ecol. 2008:2463–2475. https://doi.org/10.1016/B978-008045405-4.00065-310.1016/B978-008045405-4.00065-3 Search in Google Scholar

[67] Jamnadass R., Langford K., Anjarwalla P., Mithöfer D. Public–Private Partnerships in Agroforestry. Encycl. Agric. Food Syst. 2014:544–564. https://doi.org/10.1016/B978-0-444-52512-3.00026-710.1016/B978-0-444-52512-3.00026-7 Search in Google Scholar

[68] Eddy W. C., Yang W. H. Improvements in soil health and soil carbon sequestration by an agroforestry for food production system. Agric. Ecosyst. Environ. 2022:333:107945. https://doi.org/10.1016/J.AGEE.2022.10794510.1016/j.agee.2022.107945 Search in Google Scholar

[69] Sivanpillai R., Shroder J. F. Biological and Environmental Hazards, Risks, and Disasters. Biol. Environ. Hazards, Risks, Disasters. Elsevier 2015:1–466. https://doi.org/10.1016/C2011-0-07027-810.1016/C2011-0-07027-8 Search in Google Scholar

[70] Agricology. Agroforestry for livestock systems. [Online]. [Accessed: April 13, 2022]. Available: https://www.agricology.co.uk/resources/agroforestry-livestock-systems Search in Google Scholar

[71] Gupta J., Kumari M., Mishra A., Swati, M. Akram, I. S. Thakur. Agro-forestry waste management. A review. Chemosphere 2022:287:132321. https://doi.org/10.1016/J.CHEMOSPHERE.2021.13232110.1016/j.chemosphere.2021.13232134563778 Search in Google Scholar

[72] TOPSIS method algorithm. Download Scientific Diagram. [Online]. [Accessed: February 29, 2020]. Available: https://www.researchgate.net/figure/TOPSIS-method-algorithm_fig4_253953426 Search in Google Scholar

[73] Roszkowska E. Multi-criteria decision making models by applying the topsis method to crisp and interval data. 2011. [Online]. [Accessed: July 20, 2022]. Available: https://mcdm.ue.katowice.pl/files/papers/mcdm11(6)_11.pdf Search in Google Scholar

[74] Gancone A., Bumbiere K., Pubule J., Blumberga D. Sustainable biogas application in energy sector. 2020 IEEE 61st Annu. Int. Sci. Conf. Power Electr. Eng. Riga Tech. Univ. RTUCON 2020. https://doi.org/10.1109/RTUCON51174.2020.931659310.1109/RTUCON51174.2020.9316593 Search in Google Scholar

[75] Pielietotās augsnes apstrādes metodes dažāda ekonomiskā lieluma lauku saimniecībās. (Applied methods of soil treatment in farms of different economic sizes). [Online]. [accessed: July 20, 2022]. Available: https://data.stat.gov.lv/pxweb/lv/OSP_OD/OSP_OD__skait_apsek__metodes__laukstrukt_13/LSSA13_VI01.px/table/tableViewLayout1/ (In Latvian). Search in Google Scholar

[76] KLPSP_projekts_20220118_SFC2021. (Project of Latvian KLPSP strategic plan for 2023–2027). In Latvian. Search in Google Scholar

[77] Valsts zemes dienests. Zemes sadalījums zemes lietošanas veidos. (State Land Service. Distribution of land in land use types). [Online]. [Accessed: July 20, 2022]. Available: https://www.vzd.gov.lv/lv/zemes-sadalijums-zemeslietosanas-veidos (In Latvian). Search in Google Scholar

[78] Latvijā plāno atbalstīt vien no atkritumiem ražotu biogāzi, rosinot ražotājus kļūt par sanitāriem. (Latvia plans to support biogas produced only from waste, encouraging producers to become sanitary). [Online]. [Accessed: September 14, 2022]. https://www.la.lv/biogazes-razotajus-rosinas-klut-par-sanitariem (In Latvian). Search in Google Scholar

[79] Zaļais izrāviens vai jauns OIK? Latvija gatavojas biometāna ražošanai. (Green breakthrough or new OIK? Latvia is preparing for biomethane production). [Online]. [Accessed: September 14, 2022]. Available: https://www.lsm.lv/raksts/zinas/zinu-analize/zalais-izraviens-vai-jauns-oik-latvija-gatavojas-biometanarazosanai.a394764/ (In Latvian). Search in Google Scholar

[80] Elektriskā jauda un saražotā elektroenerģija no atjaunīgiem energoresursiem – Atjaunīgo energoresursu elektrostaciju veids un Laika periods. (Electric power and produced electricity from renewable energy resources – Type of renewable energy power plants and Time period). [Online]. [Accessed September 14, 2022]. Available: https://data.stat.gov.lv/pxweb/lv/OSP_PUB/START__NOZ__EN__ENA/ENA040/table/tableViewLayout1/ (In Latvian). Search in Google Scholar

[81] Bumbiere K., Gancone A., Pubule J., Blumberga D. Carbon balance of biogas production from maize in latvian conditions. Agron. Res. 2021:19(1):687–697. https://doi.org/10.15159/AR.21.085 Search in Google Scholar

[82] Dabasgāzes imports un patēriņš (milj. m3) – Rādītāji un Laika periods. (Natural gas import and consumption (million m3) – Indicators and Time period). [Online]. [Accessed September 11, 2022]. Available: https://data.stat.gov.lv/pxweb/lv/OSP_PUB/START__NOZ__EN__ENB/ENB020m/table/tableViewLayout1/ (In Latvian). Search in Google Scholar

[83] US EPA. Greenhouse Gas Equivalencies Calculator. [Online]. [Accessed September 11, 2022]. https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator#results Search in Google Scholar

[84] European Biogas Association. Avoided emissions from biogas and biomethane can lead to a negative carbon footprint. [Online]. [Accessed September 9, 2022]. Available: https://www.europeanbiogas.eu/avoided-emissionsfrom-biogas-and-biomethane-can-lead-to-a-negative-carbon-footprint/ (In Latvian). Search in Google Scholar

[85] O’Shea R., Lin R., Wall D. M., Browne J. D., Murphy J. D. Using biogas to reduce natural gas consumption and greenhouse gas emissions at a large distillery. Appl. Energy. 2020:279:115812. https://doi.org/10.1016/J.APENERGY.2020.11581210.1016/j.apenergy.2020.115812 Search in Google Scholar

[86] Leppäkoski L., Marttila M. P., Uusitalo V., Levänen J., Halonen V., Mikkilä M. H. Assessing the carbon footprint of biochar from willow grown on marginal lands in Finland. Sustain. 2021:13(18):10097. https://doi.org/10.3390/su13181009710.3390/su131810097 Search in Google Scholar

[87] 2020. gadā iesniegtās siltumnīcefekta gāzu inventarizācijas kopsavilkums. (Summary of the greenhouse gas inventory submitted in 2020). [Online]. [Accessed: September 13, 2022]. Available: https://www.meteo.lv/fs/CKFinderJava/userfiles/files/Vide/Klimats/Majas_lapai_LVGMC_2020_seginvkopsavilkums.pdf (In Latvian). Search in Google Scholar

[88] Paustian K., Larson E., Kent J., Marx E., Swan A. Soil C Sequestration as a Biological Negative Emission Strategy. Front. Clim. 2019. https://doi.org/10.3389/fclim.2019.0000810.3389/fclim.2019.00008 Search in Google Scholar

eISSN:
2255-8837
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, andere