Uneingeschränkter Zugang

Experimental Validation of a Fixed Bed Solid Sorption Mathematical Model Using Zeolite 13XBF


Zitieren

[1] IEA-Publications. Renewable Energy Market Update. Outlook for 2021 and 2022. Paris: International Energy Agency, 2021. Search in Google Scholar

[2] Langer A. 300 Millionen Euro gegen Gas-Abhängigkeit (300 million euros against gas dependency) [Online]. [Accessed 08.04.2022]. Available: https://www.meinbezirk.at/c-politik/300-millionen-euro-gegen-gasabhaengigkeit_a5261959 (in German) Search in Google Scholar

[3] APA. Eine Mehrheit der Abgeordneten im EU-Parlament hat einen sofortigen Lieferstopp von Öl, Kohle und Gas aus Russland gefordert (A majority of MEPs in the European Parliament have called for an immediate halt to the supply of oil, coal and gas from Russia) [Online]. [Accessed 08 04 2022]. Available: https://www.vol.at/eu-parlament-furlieferstopp-von-russischem-gas-ol-kohle/7363453 (in German) Search in Google Scholar

[4] Al Jazeera Nes Agencies. US, EU announce plan to reduce European reliance on Russian gas [Online]. [Accessed 08.04.2022]. Available: https://www.aljazeera.com/news/2022/3/25/us-eu-launch-team-to-reduce-european-reliance-on-russian-gas Search in Google Scholar

[5] Dincer I., Rosen M. Thermal Energy Storage - Systems and Applications. Canada: Wiley and Sons Publication, 2011. Search in Google Scholar

[6] N’Tsoukpoe K. E., et al. A review on long-term sorption solar energy storage. Renewable and Sustainable Energy Reviews 2009:13(9):2385–2396. https://doi.org/10.1016/j.rser.2009.05.008 Search in Google Scholar

[7] Yu N., et al. Sorption thermal storage for solar energy. Progress in Energy and Combustion Science 2013:39(5)489–514. https://doi.org/10.1016/j.pecs.2013.05.004 Search in Google Scholar

[8] Krese G., et al. Thermochemical seasonal solar energy storage for heating and cooling of buildings. Energy and Buildings 2018:164:239–253. https://doi.org/10.1016/j.enbuild.2017.12.057 Search in Google Scholar

[9] Kousksou T., et al. Energy storage: Applications and challenges. Solar Energy Materials and Solar Cells 2014:120:59–80. https://doi.org/10.1016/j.solmat.2013.08.015 Search in Google Scholar

[10] Paksoy H. Ö. Thermal energy storage for sustainable energy consumption: Fundamentals, case studies and design. Springer, 2007.10.1007/978-1-4020-5290-3 Search in Google Scholar

[11] Zondag H., et al. Prototype thermochemical heat storage with open reactor system. Applied Energy 2013:109:360–365. https://doi.org/10.1016/j.apenergy.2013.01.082 Search in Google Scholar

[12] Mette B., Kerskes H., Drück H. Concepts of long-term thermochemical energy storage for solar thermal applications e selected examples. Energy Procedia 2012:30:321–330. https://doi.org/10.1016/j.egypro.2012.11.038 Search in Google Scholar

[13] Zondag H. A. Engineering assessment of reactor design for thermochemical storage of solar heat. Presented the 11th International Conference on Thermal Energy Storage, Stockholm, Sweden, 2009. Search in Google Scholar

[14] Opel O. Thermochemical storage materials research and TGA/DSC hydration studies. Presented at the IC-SES Internation Conference on Sustainable Energy Storage, Belfast, UK, 2011. Search in Google Scholar

[15] Jänchen J., Stach H. Adsorption properties of porous materials for solar thermal energy storage and heat pump applications. Energy Procedia 2012:30:289–293. https://doi.org/10.1016/j.egypro.2012.11.034 Search in Google Scholar

[16] Fischer U. What is the best possible heat storage density for a seasonal adsorptive thermal energy storage. Presented at the 11th International Conference on Thermal Energy Storage, Stockholm, Sweden, 2009. Search in Google Scholar

[17] Engel G., et al. Simulation of a seasonal, solar-driven sorption storage heating system. Journal of Energy Storage 2017:13:40–47. https://doi.org/10.1016/j.est.2017.06.001 Search in Google Scholar

[18] Tatsidjodoung P., et al. Experimental and numerical investigations of a zeolite 13X/water reactor for solar heat storage in buildings. Energy Conversion and Management 2016:108:488–500. https://doi.org/10.1016/j.enconman.2015.11.011 Search in Google Scholar

[19] Gaeini M., et al. Effect of kinetics on the thermal performance of a sorption heat storage reactor. Applied Thermal Engineering 2016:102:520–531. https://doi.org/10.1016/j.applthermaleng.2016.03.055 Search in Google Scholar

[20] Mette B., et al. Experimental and numerical investigations on the water vapor adsorption isotherms and kinetics of binderless zeolite 13X. International Journal of Heat and Mass Transfer 20014:71:555–561. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.061 Search in Google Scholar

[21] Kuznik F., et al. Numerical modelling and investigations on a full-scale zeolite 13X open heat storage for buildings. Renewable Energy 2019:132:761–772. https://doi.org/10.1016/j.renene.2018.07.118 Search in Google Scholar

[22] Weber R., Kerskes H., Drück H. Development of a Combined Hot Water and Sorption Store for Solar Thermal Systems. Energy Procedia 2014:48:464–473. https://doi.org/10.1016/j.egypro.2014.02.055 Search in Google Scholar

[23] Weber R., et al. SolSpaces- Testing and Performance Analysis of a Segmented Sorption Store for Solar Thermal Space Heating. Energy Procedia 2016:91:250–258. https://doi.org/10.1016/j.egypro.2016.06.214 Search in Google Scholar

[24] Bertsch F., et al. Comparison of the Thermal Perfimance of a Solar Heating System with Open and Closed Solid Sorption Storage. Energy Procedia 2014:48:280–289. https://doi.org/10.1016/j.egypro.2014.02.033 Search in Google Scholar

[25] Zettl B., Englmair G., Steinmaurer G. Development of a revolving drum reactor for open-sorption heat storage processes. Applied Thermal Engineering 2014:70:42–49. https://doi.org/10.1016/j.applthermaleng.2014.04.069 Search in Google Scholar

[26] Reichl C., et al. Fluid dynamics simulations for an open-sorption heat storage drum reactor based on thermophysical kinetics and experimental observations. Applied Thermal Engineering 2016:107:994–1007. https://doi.org/10.1016/j.applthermaleng.2016.06.119 Search in Google Scholar

[27] Daborer-Prado N., et al. Mathematical Modelling of Rotating Sorption Heat Storages. Proceedings of the Solar World Congress 2019.10.18086/swc.2019.22.01 Search in Google Scholar

[28] Dada A., et al. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+Unto Phosphoric Acid Modi. Journal of Applied Chemistry 2012:3(1):38–45. https://doi.org/10.9790/5736-0313845 Search in Google Scholar

[29] Ayawei N., Ebelegi A. N,. Wankasi D. Modelling and Interpretation of Adsorption Isotherms. Journal of Chemistry 2017:1:1–11. https://doi.org/10.1155/2017/3039817 Search in Google Scholar

[30] CWK. Zeolites [Online]. [Accessed 08.02.2022]. Available: https://www.cwk-bk.de/en/products/molecular-sieves/zeolites Search in Google Scholar

[31] Glueckauf E. Theory of chomatography. Part 10- formulae for diffusion into spheres and their application to chomatography. Transaction of the Faraday Society 1955:51:1540–1551. https://doi.org/10.1039/tf9555101540 Search in Google Scholar

eISSN:
2255-8837
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, andere