1. bookVolumen 26 (2022): Heft 1 (January 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2255-8837
Erstveröffentlichung
26 Mar 2010
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

A New Method for the Rapid Synthesis of Gas Hydrates for their Storage and Transportation

Online veröffentlicht: 27 Apr 2022
Volumen & Heft: Volumen 26 (2022) - Heft 1 (January 2022)
Seitenbereich: 199 - 212
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2255-8837
Erstveröffentlichung
26 Mar 2010
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch
Abstract

This presents the analysis of the main reasons for a significant decrease in the intensity of diffusion processes during formation of gas hydrates; solutions to this problem are proposed in a new process flow diagram for the continuous synthesis of gas hydrates. The physical processes, occurring at corresponding stages of the process flow are described in detail. In the proposed device, gas hydrate is formed at the boundary of gas bubbles immersed in cooled water. The dynamic effects arising at the bubble boundary contribute to destruction of a forming gas hydrate structure, making it possible to renew the contact surface and ensure efficient heat removal from the reaction zone. The article proposes an assessment technique for the main process parameters of the synthesis of gas hydrates based on the criterion of thermodynamic parameters optimization.

[1] Koh C. A., Sum A. K., Sloan E. D. State of the art: Natural gas hydrates as a natural resource. J. Nat. Gas Sci. Eng. 2012:8:132–138. https://doi.org/10.1016/j.jngse.2012.01.00510.1016/j.jngse.2012.01.005 Search in Google Scholar

[2] Boswell R., et al. 6 - Natural Gas Hydrates: Status of Potential as an Energy Resource. Future Energy (Third Edition) Improved. Sustainable and Clean Options for our Planet. Elsevier, 2020:111–131. https://doi.org/10.1016/B978-0-08-102886-5.00006-210.1016/B978-0-08-102886-5.00006-2 Search in Google Scholar

[3] Xu H., et al. Decomposition characteristics of natural gas hydrates in hydraulic lifting pipelines. Natural Gas Industry B 2019:6(2):159–167. https://doi.org/10.1016/j.ngib.2018.07.00510.1016/j.ngib.2018.07.005 Search in Google Scholar

[4] Pavlenko A., Koshlak H. Application of Thermal and Cavitation Effects for Heat and Mass Transfer Process Intensification in Multicomponent Liquid Media. Energies 2021:14(23):7996. https://doi.org/10.3390/en14237996.10.3390/en14237996 Search in Google Scholar

[5] Boswell R., Collett T. S. Current perspectives on gas hydrate resources. Energy Environ. Sci. 2011:4:1045–1528. https://doi.org/10.1039/C0EE00203H10.1039/C0EE00203H Search in Google Scholar

[6] Zhao J., et al. Analysing the process of gas production for natural gas hydrate using depressurization. Appl. Energy 2015:142:125–134. https://doi.org/10.1016/j.apenergy.2014.12.07110.1016/j.apenergy.2014.12.071 Search in Google Scholar

[7] Pavlenko A. Self-preservation Effect of Gas Hydrates. Rocznik Ochrona Šrodowiska 2021:23:346–355. https://doi.org/10.54740/ros.2021.02310.54740/ros.2021.023 Search in Google Scholar

[8] Chong Z. R., et al. Review of natural gas hydrates as an energy resource: Prospects and challenges. Appl. Energy 2016:162:1633–1652. https://doi.org/10.1016/j.apenergy.2014.12.06110.1016/j.apenergy.2014.12.061 Search in Google Scholar

[9] Chong Z. R., et al. Review of natural gas hydrates as an energy resource: Prospects and challenges. Applied Energy 2016:162:1633–1652. https://doi.org/10.1016/j.apenergy.2014.12.06110.1016/j.apenergy.2014.12.061 Search in Google Scholar

[10] Siažik J., Malcho M. Accumulation of primary energy into natural gas hydrates. Procedia Engineering 2017:192:782–787. https://doi.org/10.1016/j.proeng.2017.06.13510.1016/j.proeng.2017.06.135 Search in Google Scholar

[11] Zhou S., et al. Research on the solid fluidization well testing and production for shallow non-diagenetic natural gas hydrate in deep water area China Offshore. Oil Gas 2017:29:(4):1–8. Search in Google Scholar

[12] Bahadori A. Chapter 13—Liquefied Natural Gas (LNG). In Natural Gas Processing Technology and Engineering Design, 2014:591–632. https://doi.org/10.1016/B978-0-08-099971-5.00013-110.1016/B978-0-08-099971-5.00013-1 Search in Google Scholar

[13] Kiran B. S., et al. Experimental investigations on tetrahydrofuran-methane-water system: Rapid methane gas storage in hydrates. Oil Gas Sci. Technol.-Rev. IFP Energ. Nouv. 2019:74:12. https://doi.org/10.2516/ogst/201809210.2516/ogst/2018092 Search in Google Scholar

[14] Zhang P., et al. Heat transfer and water migration rules during formation/dissociation of methane hydrate under temperature fields with gradient. International Journal of Heat and Mass Transfer 2021:169:120929. https://doi.org/10.1016/j.ijheatmasstransfer.2021.12092910.1016/j.ijheatmasstransfer.2021.120929 Search in Google Scholar

[15] Zhao J., et al. In-situ visual observation for the formation and dissociation of methane hydrates in porous media by magnetic resonance imaging. Magn. Reson. Imaging 2015:33(4):485–490. https://doi.org/10.1016/j.mri.2014.12.01010.1016/j.mri.2014.12.010 Search in Google Scholar

[16] Rossi F., Filipponi M., Castellani B. Investigation on a novel reactor for gas hydrate production. Applied Energy 2012:99:167–172. https://doi.org/10.1016/j.apenergy.2012.05.00510.1016/j.apenergy.2012.05.005 Search in Google Scholar

[17] Koh D. Y., et al. Energy–efficient natural gas hydrate production using gas exchange. Applied Energy 2016:162:114–130. https://doi.org/10.1016/j.apenergy.2015.10.08210.1016/j.apenergy.2015.10.082 Search in Google Scholar

[18] Kumar K. V., et al. Nanoporous materials for the onboard storage of natural gas. Chem. Rev. 2017:117:1796–1825. https://doi.org/10.1021/acs.chemrev.6b0050510.1021/acs.chemrev.6b00505 Search in Google Scholar

[19] Song Y. M., et al. Energy-efficient storage of methane in the formed hydrates with metal nanoparticles-grafted carbon nan- otubes as promoter. Applied Energy 2018:224:175–183. https://doi.org/10.1016/j.apenergy.2018.04.06810.1016/j.apenergy.2018.04.068 Search in Google Scholar

[20] Chong Z. R., et al. Review of natural gas hydrates as an energy resource: prospects and challenges. Applied Energy 2016:162:1633–1652. https://doi.org/10.1016/j.apenergy.2014.12.06110.1016/j.apenergy.2014.12.061 Search in Google Scholar

[21] Baek S., et al. Enhanced methane hydrate formation with cyclopentane hydrate seeds. Applied Energy 2017:202:32–41. https://doi.org/10.1016/j.apenergy.2017.05.10810.1016/j.apenergy.2017.05.108 Search in Google Scholar

[22] Veluswamy H. P., et al. An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application. Applied Energy 2017:188:190–199. https://doi.org/10.1016/j.apenergy.2016.12.00210.1016/j.apenergy.2016.12.002 Search in Google Scholar

[23] Veluswamy H. P., et al. A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates. Applied Energy 2018:216:262–285. https://doi.org/10.1016/j.apenergy.2018.02.05910.1016/j.apenergy.2018.02.059 Search in Google Scholar

[24] Kiran B. S., et al. Experimental investigations on tetrahydrofuran – methane – water system: Rapid methane gas storage in hydrates. Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 2019:74:12. https://doi.org/10.2516/ogst/201809210.2516/ogst/2018092 Search in Google Scholar

[25] He Y., et al. Surfactan- t-based promotion to gas hydrate formation for energy storage. J. Mater. Chem. 2019:A7:21634–21661. https://doi.org/10.1039/C9TA07071K10.1039/C9TA07071K Search in Google Scholar

[26] Zhang J. S., Lee S., Lee J. W. Kinetics of methane hydrate formation from SDS solution. Ind. Eng. Chem. Res. 2007:46:6353–6359. https://doi.org/10.1021/ie070627r10.1021/ie070627r Search in Google Scholar

[27] Jin Y., Konno Y., Nagao J. Growth of methane clathrate hydrates in porous media. Energ. Fuel. 2012:26:2242–2247. https://doi.org/10.1021/ef300135710.1021/ef3001357 Search in Google Scholar

[28] Arora A., et al. Biosurfactant as a promoter of methane hydrate formation: thermodynamic and kinetic studies. Sci Rep 2016:6:20893. https://doi.org/10.1038/srep2089310.1038/srep20893 Search in Google Scholar

[29] Kumar A., et al. Role of surfactants in promoting gas hydrate formation. Ind. Eng. Chem. Res. 2015:54:12217–12232. https://doi.org/10.1021/acs.iecr.5b0347610.1021/acs.iecr.5b03476 Search in Google Scholar

[30] Veluswamy H. P., Hong Q. W., Linga P. Morphology study of methane hydrate formation and dissociation in the presence of amino acid. Cryst Growth Des 2016:16:5932–5945. https://doi.org/10.1021/acs.cgd.6b0099710.1021/acs.cgd.6b00997 Search in Google Scholar

[31] Liu Y., et al. Methane storage in a hydrated form as promoted by leucines for possible application to natural gas transportation and storage. Energy Technol. 2015:3(8):815–819. https://doi.org/10.1002/ente.20150004810.1002/ente.201500048 Search in Google Scholar

[32] Veluswamy H. P., et al. Effect of biofriendly amino acids on the kinetics of methane hydrate formation and dissociation. Ind Eng Chem Res 2017:56(21):6145–6154. https://doi.org/10.1021/acs.iecr.7b0042710.1021/acs.iecr.7b00427 Search in Google Scholar

[33] Mohammad-Taheri M., et al. Methane hydrate stability in the presence of water-soluble hydroxyalkyl cellulose. J Nat Gas Chem 2012:21(2):119–125. https://doi.org/10.1016/S1003-9953(11)60343-510.1016/S1003-9953(11)60343-5 Search in Google Scholar

[34] Sharma D., et al. Methane storage in mixed hydrates with tetrahydrofuran. Indian J Chem Technol 2014:21:114–119. Search in Google Scholar

[35] Sowjanya Y., Prasad P. S. R. Formation kinetics & phase stability of double hydrates of C4H8O and CO2/CH4: A comparison with pure systems. Journal of Natural Gas Science and Engineering 2014:18:58–63. https://doi.org/10.1016/j.jngse.2014.02.00110.1016/j.jngse.2014.02.001 Search in Google Scholar

[36] Veluswamy H. P., et al. Enhanced clathrate hydrate formation kinetics at near ambient temperatures and moderate pressures: Application to natural gas storage. Fuel 2016:182:907–919. https://doi.org/10.1016/j.fuel.2016.05.06810.1016/j.fuel.2016.05.068 Search in Google Scholar

[37] Delahaye A., et al. Effect of THF on equilibrium pressure and dissociation enthalpy of CO2 hydrates applied to secondary refrigeration. Ind. Eng. Chem. Res. 2006:45:391–397. https://doi.org/10.1021/ie050356p10.1021/ie050356p Search in Google Scholar

[38] Sharma D., et al. Methane storage in mixed hydrates with tetrahydrofuran. Indian J. Chem. Technol. 2014:21:114–119. Kiran B. S., et al. Experimental investigations on tetrahydrofuran – methane – water system: Rapid methane gas storage in hydrates. Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 2019:74:12. https://doi.org/10.2516/ogst/201809210.2516/ogst/2018092 Search in Google Scholar

[39] Lucia B., et al. Experimental investigations on scaled-up methane hydrate production with surfactant promotion: Energy considerations. Journal of Petroleum Science and Engineering 2014:120:187–193. https://doi.org/10.1016/j.petrol.2014.06.01510.1016/j.petrol.2014.06.015 Search in Google Scholar

[40] Rossi F., Filipponi M., Castellani B. Investigation on a novel reactor for gas hydrate production. Applied Energy 2012:99:167–172. https://doi.org/10.1016/j.apenergy.2012.05.00510.1016/j.apenergy.2012.05.005 Search in Google Scholar

[41] Luo Y. T., et al. Study on the kinetics of hydrate formation in a bubble column. Chemical Engineering Science 2007:62(4):1000–1009. https://doi.org/10.1016/j.ces.2006.11.00410.1016/j.ces.2006.11.004 Search in Google Scholar

[42] Cheng C., et al. Review and prospects of hydrate cold storage technology. Renewable and Sustainable Energy Reviews 2020:117:109492. https://doi.org/10.1016/j.rser.2019.10949210.1016/j.rser.2019.109492 Search in Google Scholar

[43] Pavlenko A., Koshlak H. Intensification of Gas Hydrate Formation Processes by Renewal of Interfacial Area between Phases. Energies 2021:14(18):5912. https://doi.org/10.3390/en1418591210.3390/en14185912 Search in Google Scholar

[44] Murakami T., et al. Forming a Structure-H Hydrate Using Water and Methylcyclohexane Jets Impinging on Each Other in a Methane Atmosphere. Energy & Fuels 2009:23:1619–1625. https://doi.org/10.1021/ef800880f10.1021/ef800880f Search in Google Scholar

[45] Pavlenko A. Thermodynamic Features of the Intensive Formation of Hydrocarbon Hydrates. Energies 2020:13:3396. https://doi.org/10.3390/en1313339610.3390/en13133396 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo