1. bookVolumen 26 (2022): Heft 1 (January 2022)
26 Mar 2010
2 Hefte pro Jahr
access type Uneingeschränkter Zugang

Assessments under the United Nations Sustainable Development Goals: A Bibliometric Analysis

Online veröffentlicht: 24 Mar 2022
Volumen & Heft: Volumen 26 (2022) - Heft 1 (January 2022)
Seitenbereich: 166 - 181
26 Mar 2010
2 Hefte pro Jahr

The United Nations announced its 2030 Agenda for Sustainable Development worldwide in 2015. Comprehensive assessments of member states’ performance towards achieving the related UN Sustainable Development Goals (SDGs) have since become a major challenge for national and subnational governments. This article presents a bibliometric analysis on the assessment of SDGs, at both the general and specific levels, based on 418 publications obtained from Scopus. The general level of analysis includes the number, types, and subject areas of documents published each year, as well as considerations such as the most-cited publications and the leading authors, journals, countries, institutional affiliations, and funders. The specific level of analysis includes a study of the relevant concepts in the publications and their relationships, allowing for the identification of predominant assessments under the 2030 Agenda, and of the most-often evaluated SDGs. Results indicated a focus on measuring impacts and risks, with SDGs 3, 6, 13, 7, 8, and 4 having been assessed the most often among the 17 SDGs, which is consistent with findings in prevalent subject areas such as environmental sciences, social sciences, medicine, and energy. Future works should address assessments under the 2030 Agenda more comprehensively, including analyses on trade-offs among the SDGs and on the transversal nature of some of these goals.

[1] Srivastava A. Standardizing evaluation process: Necessary for achieving SDGs – A case study of India. Eval. Program Plann. 2018:69:118–124. https://doi.org/10.1016/j.evalprogplan.2018.05.00110.1016/j.evalprogplan.2018.05.001 Search in Google Scholar

[2] Banerjee O., Cicowiez M., Horridge M., Vargas R. Evaluating synergies and trade-offs in achieving the SDGs of zero hunger and clean water and sanitation: An application of the IEEM Platform to Guatemala. Ecol. Econ. 2019:161:280–291. https://doi.org/10.1016/j.ecolecon.2019.04.00310.1016/j.ecolecon.2019.04.003 Search in Google Scholar

[3] Phillips J. The application of the Geocybernetic Assessment Matrix to the UN 2030 Sustainable Development Goals. Environ. Dev. Sustain. 2020:23:7550–7572. https://doi.org/10.1007/s10668-020-00932-610.1007/s10668-020-00932-6 Search in Google Scholar

[4] Londoño A., Cruz J. G. Evaluation of sustainable development in the sub-regions of Antioquia (Colombia) using multicriteria composite indices: A tool for prioritizing public investment at the subnational level. Environ. Dev. 2019:32:100442. https://doi.org/10.1016/j.envdev.2019.05.00110.1016/j.envdev.2019.05.001 Search in Google Scholar

[5] El-Maghrabi M. H., Gable S., Osorio-Rodarte I., Verbeek J. Sustainable Development Goals Diagnostics: An Application of Network Theory and Complexity Measures to Set Country Priorities. Working Paper; No. 8481. World Bank 2018. https://doi.org/10.1596/1813-9450-848110.1596/1813-9450-8481 Search in Google Scholar

[6] Schmidt-Traub G., Kroll C., Teksoz K., Durand-Delacre D., Sachs J. D. National baselines for the Sustainable Development Goals assessed in the SDG Index and Dashboards. Nat. Geosci. 2017:10(8):547–555. https://doi.org/10.1038/ngeo298510.1038/ngeo2985 Search in Google Scholar

[7] Allen C., Reid M., Thwaites J., Glover R., Kestin T. Assessing national progress and priorities for the Sustainable Development Goals (SDGs): experience from Australia. Sustain. Sci. 2020:15(2):521–538. https://doi.org/10.1007/s11625-019-00711-x10.1007/s11625-019-00711-x Search in Google Scholar

[8] Schuschny A., Soto H. Guía metodológica: diseño de indicadores compuestos de desarrollo sostenible. (Methodological guide: design of composite indicators of sustainable development). Santiago de Chile: Naciones Unidas. CEPAL, 2009. Search in Google Scholar

[9] Londoño A. Metodología y evaluación del desarrollo sostenible de las subregiones que integran el departamento de Antioquia (Colombia), bajo un enfoque sistémico inter-temático y multicriterio. (Methodology and evaluation of the sustainable development of the subregions that make up the department of Antioquia (Colombia), under an inter-thematic and multi-criteria systemic approach). Universidad de Manizales, 2018. Search in Google Scholar

[10] Abou-Ali H., Abdelfattah Y. M. Integrated paradigm for sustainable development: A panel data study. Econ. Model. 2013:30(1):334–342. https://doi.org/10.1016/j.econmod.2012.09.01610.1016/j.econmod.2012.09.016 Search in Google Scholar

[11] Giddings B., Hopwood B., O’Brien G. Environment, economy and society: fitting them together into sustainable development. Sustain. Dev. 2002:10(4):187–196. https://doi.org/10.1002/sd.19910.1002/sd.199 Search in Google Scholar

[12] Holden E., Linnerud K., Banister D. Sustainable development: Our Common Future revisited. Glob. Environ. Chang. 2014:26(1):130–139. https://doi.org/10.1016/j.gloenvcha.2014.04.00610.1016/j.gloenvcha.2014.04.006 Search in Google Scholar

[13] Biggeri M., Clark D. A., Ferrannini A., Mauro V. Tracking the SDGs in an ‘integrated’ manner: A proposal for a new index to capture synergies and trade-offs between and within goals. World Dev. 2019:122:628–647. https://doi.org/10.1016/j.worlddev.2019.05.02210.1016/j.worlddev.2019.05.022 Search in Google Scholar

[14] Ali-Toudert F., Ji L. Modeling and measuring urban sustainability in multi-criteria based systems – A challenging issue. Ecol. Indic. 2017:73:597–611. https://doi.org/10.1016/j.ecolind.2016.09.04610.1016/j.ecolind.2016.09.046 Search in Google Scholar

[15] Sepúlveda S. Metodología para estimar el nivel de desarrollo sostenible de territorios: Biograma 2008. (Methodology to estimate the level of sustainable development of territories: Biograma 2008). San José, Costa Rica: Instituto Interamericano de Cooperación para la Agricultura (IICA), 2008. Search in Google Scholar

[16] Miola A., Schiltz F. Measuring sustainable development goals performance: How to monitor policy action in the 2030 Agenda implementation? Ecol. Econ. 2019:164:106373. https://doi.org/10.1016/j.ecolecon.2019.10637310.1016/j.ecolecon.2019.106373 Search in Google Scholar

[17] Hickel J. The sustainable development index: Measuring the ecological efficiency of human development in the anthropocene. Ecol. Econ. 2020:167:106331. https://doi.org/10.1016/j.ecolecon.2019.05.01110.1016/j.ecolecon.2019.05.011 Search in Google Scholar

[18] Da Silva J., Fernandes V., Limont M., Rauen W. Sustainable development assessment from a capitals perspective: Analytical structure and indicator selection criteria. J. Environ. Manage. 2020:260:110147. https://doi.org/10.1016/j.jenvman.2020.11014710.1016/j.jenvman.2020.110147 Search in Google Scholar

[19] Ambrogui R. Desarrollo Sostenible: Concepto y Evolución del Paradigma. (Sustainable development: Concept and paradigm evolution). 2017:5(9):110–125. https://doi.org/10.5377/reice.v5i9.436610.5377/reice.v5i9.4366 Search in Google Scholar

[20] Hansson S. O. Technology and the notion of sustainability. Technol. Soc. 2010:32(4):274–279. https://doi.org/10.1016/j.techsoc.2010.10.00310.1016/j.techsoc.2010.10.003 Search in Google Scholar

[21] Álvarez-Hincapié C. F. Capital natural crítico y función de hábitat como aproximación a la complejidad ambiental. (Critical natural capital and habitat function as an approach to environmental complexity). Rev. Lasallista Investig. 2010:7(2):132–149. Search in Google Scholar

[22] Gallopín G. Los indicadores de desarrollo sostenible: aspectos conceptuales y metodológicos. (Indicators of sustainable development: conceptual and methodological aspects). 2006. Search in Google Scholar

[23] Von Stechow C. et al. 2 °C and SDGs: United they stand, divided they fall? Environ. Res. Lett. 2016:11(3):034022. https://doi.org/10.1088/1748-9326/11/3/03402210.1088/1748-9326/11/3/034022 Search in Google Scholar

[24] Zhi L. et al. Pyrolyzed biowastes deactivated potentially toxic metals and eliminated antibiotic resistant genes for healthy vegetable production. J. Clean. Prod. 2020:276:124208. https://doi.org/10.1016/j.jclepro.2020.12420810.1016/j.jclepro.2020.124208 Search in Google Scholar

[25] Kok B. et al. Fish as feed: Using economic allocation to quantify the Fish In: Fish Out ratio of major fed aquaculture species. Aquaculture 2020:528:735474. https://doi.org/10.1016/j.aquaculture.2020.73547410.1016/j.aquaculture.2020.735474 Search in Google Scholar

[26] Ahner-McHaffie T. W., Guest G., Petruney T., Eterno A., Dooley B. Evaluating the impact of integrated development: are we asking the right questions? A systematic review. Gates Open Res. 2018:1–6. https://doi.org/10.12688/gatesopenres.12755.210.12688/gatesopenres.12755.2 Search in Google Scholar

[27] Asi Y. M., Williams C. The role of digital health in making progress toward Sustainable Development Goal (SDG) 3 in conflict-affected populations. Int. J. Med. Inform. 2018:114:114–120. https://doi.org/10.1016/j.ijmedinf.2017.11.00310.1016/j.ijmedinf.2017.11.003 Search in Google Scholar

[28] Vanham D. et al. Physical water scarcity metrics for monitoring progress towards SDG target 6.4: An evaluation of indicator 6.4.2, Level of water stress. Sci. Total Environ. 2018:613–614:218–232. https://doi.org/10.1016/j.scitotenv.2017.09.05610.1016/j.scitotenv.2017.09.056 Search in Google Scholar

[29] Nam Chol O., Kim H. Towards the 2 °C goal: Achieving Sustainable Development Goal (SDG) 7 in DPR Korea,’ Resour. Conserv. Recycl. 2019:150:104412. https://doi.org/10.1016/j.resconrec.2019.10441210.1016/j.resconrec.2019.104412 Search in Google Scholar

[30] Gennari P., D’Orazio M. A statistical approach for assessing progress towards the SDG targets. Stat. J. IAOS 2020:36:1129–1142. https://doi.org/10.3233/SJI-20068810.3233/SJI-200688 Search in Google Scholar

[31] El Mohadab M., Bouikhalene B., Safi S. Bibliometric method for mapping the state of the art of scientific production in Covid-19. Chaos, Solitons and Fractals 2020:139:110052. https://doi.org/10.1016/j.chaos.2020.11005210.1016/j.chaos.2020.110052 Search in Google Scholar

[32] Brooks T. M. et al. Harnessing biodiversity and conservation knowledge products to track the Aichi Targets and Sustainable Development Goals. Biodiversity 2015:16(2–3:)157–174. https://doi.org/10.1080/14888386.2015.107590310.1080/14888386.2015.1075903 Search in Google Scholar

[33] Meuleman L., Niestroy I. Common But Differentiated Governance: A Metagovernance Approach to Make the SDGs Work. Sustainability 2015:7(9):12295–12321. https://doi.org/10.3390/su7091229510.3390/su70912295 Search in Google Scholar

[34] United Nations, Global Sustainable Development Report: The Future is Now – Science for Achieving Sustainable Development. New York: United Nations, 2019. Search in Google Scholar

[35] Omisore A. G. Attaining Sustainable Development Goals in sub-Saharan Africa; the need to address environmental challenges. Environ. Dev. 2018:25:138–145. https://doi.org/10.1016/j.envdev.2017.09.00210.1016/j.envdev.2017.09.002 Search in Google Scholar

[36] Wiedmann T., Lenzen M. Environmental and social footprints of international trade. Nat. Geosci. 2018:11(5):314–321. https://doi.org/10.1038/s41561-018-0113-910.1038/s41561-018-0113-9 Search in Google Scholar

[37] Watts N. et al. The Lancet Countdown: tracking progress on health and climate change. Lancet 2017:389(10074):1151–1164. https://doi.org/10.1016/S0140-6736(16)32124-910.1016/S0140-6736(16)32124-9 Search in Google Scholar

[38] Xue L. et al. Missing Food, Missing Data? A Critical Review of Global Food Losses and Food Waste Data. Environ. Sci. Technol. 2017:51(12):6618–6633. https://doi.org/10.1021/acs.est.7b0040110.1021/acs.est.7b00401 Search in Google Scholar

[39] Lozano R. et al. Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018:392(10159):2091–2138. https://doi.org/10.1016/S0140-6736(18)32281-510.1016/S0140-6736(18)32281-5 Search in Google Scholar

[40] McCollum D. L. et al. Connecting the sustainable development goals by their energy inter-linkages. Environ. Res. Lett. 2018:13:033006. https://doi.org/10.1088/1748-9326/aaafe310.1088/1748-9326/aaafe3 Search in Google Scholar

[41] Niessen L. W. et al. Tackling socioeconomic inequalities and non-communicable diseases in low-income and middleincome countries under the sustainable development agenda. Lancet 2018:391(10134):2036–2046. https://doi.org/10.1016/S0140-6736(18)30482-310.1016/S0140-6736(18)30482-3 Search in Google Scholar

[42] Spangenberg J. H. Hot air or comprehensive progress? A critical assessment of the SDGs. Sustain. Dev. 2017:25(4):311–321. https://doi.org/10.1002/sd.165710.1002/sd.1657 Search in Google Scholar

[43] Mills G. et al. Ozone pollution will compromise efforts to increase global wheat production. Glob. Chang. Biol. 2018:24(8):3560–3574. https://doi.org/10.1111/gcb.1415710.1111/gcb.14157 Search in Google Scholar

[44] Mancini L., Sala S. Social impact assessment in the mining sector: Review and comparison of indicators frameworks. Resour. Policy 2018:57:98–111. https://doi.org/10.1016/j.resourpol.2018.02.00210.1016/j.resourpol.2018.02.002 Search in Google Scholar

[45] Delanka-Pedige H. M. K., Munasinghe-Arachchige S. P., Abeysiriwardana-Arachchige I. S. A., Nirmalakhandan N. Wastewater infrastructure for sustainable cities: assessment based on UN sustainable development goals (SDGs). Int. J. Sustain. Dev. World Ecol. 2020:28(3):203–209. https://doi.org/10.1080/13504509.2020.179500610.1080/13504509.2020.1795006 Search in Google Scholar

[46] Delanka-Pedige H. M. K., Munasinghe-Arachchige S. P., Isuru S. A., Zhang Y., Nirmalakhandan N. Algal pathway towards meeting United Nation’s sustainable development goal 6. Int. J. Sustain. Dev. World Ecol. 2020:27(8):678–686. https://doi.org/10.1080/13504509.2020.175697710.1080/13504509.2020.1756977 Search in Google Scholar

[47] Munasinghe-Arachchige S. P., Abeysiriwardana-Arachchige I. S. A., Delanka-Pedige H. M. K., Nirmalakhandan N. Sewage treatment process refinement and intensification using multi-criteria decision making approach: A case study. J. Water Process Eng. 2020:37:101485. https://doi.org/10.1016/j.jwpe.2020.10148510.1016/j.jwpe.2020.101485 Search in Google Scholar

[48] Chen J., Zhou D., Zhao Y., Wu B., Wu T. Life cycle carbon dioxide emissions of bike sharing in China: Production, operation, and recycling. Resour. Conserv. Recycl. 2020:162:105011. https://doi.org/10.1016/j.resconrec.2020.10501110.1016/j.resconrec.2020.105011 Search in Google Scholar

[49] Jolliet O. et al. Global guidance on environmental life cycle impact assessment indicators: impacts of climate change, fine particulate matter formation, water consumption and land use. Int. J. Life Cycle Assess. 2018:23:2189–2207. https://doi.org/10.1007/s11367-018-1443-y10.1007/s11367-018-1443-y Search in Google Scholar

[50] Trinder J., Liu Q. Assessing environmental impacts of urban growth using remote sensing. Geo-Spatial Inf. Sci. 2020:23(1):20–39. https://doi.org/10.1080/10095020.2019.171043810.1080/10095020.2019.1710438 Search in Google Scholar

[51] Ward J. S. T. et al. Large-scale survey of seasonal drinking water quality in Malawi using in situ tryptophan-like fluorescence and conventional water quality indicators. Sci. Total Environ. 2020:744:140674. https://doi.org/10.1016/j.scitotenv.2020.14067410.1016/j.scitotenv.2020.140674 Search in Google Scholar

[52] Sogbanmu T. O., Aitsegame S. O., Otubanjo O. A., Odiyo J. O. Drinking water quality and human health risk evaluations in rural and urban areas of Ibeju-Lekki and Epe local government areas, Lagos, Nigeria. Hum. Ecol. Risk Assess. An Int. J. 2020:26(4):1062–1075. https://doi.org/10.1080/10807039.2018.155442810.1080/10807039.2018.1554428 Search in Google Scholar

[53] Leung K. M. Y. et al. Toward Sustainable Environmental Quality: Priority Research Questions for Asia. Environ. Toxicol. Chem. 2020:39(8):1485–1505. https://doi.org/10.1002/etc.478810.1002/etc.4788 Search in Google Scholar

[54] Gupta R., Wood D. A. Primary prevention of ischaemic heart disease: Populations, individuals, and health professionals. Lancet 2019:394(10199):685–696. https://doi.org/10.1016/S0140-6736(19)31893-810.1016/S0140-6736(19)31893-8 Search in Google Scholar

[55] Rao C. Elements of a strategic approach for strengthening national mortality statistics programmes. BMJ Glob. Heal. 2019:4(5):e001810. https://doi.org/10.1136/bmjgh-2019-00181010.1136/bmjgh-2019-001810 Search in Google Scholar

[56] Ridoutt B. G., Hendrie G. A., Noakes M. Dietary strategies to reduce environmental impact: A critical review of the evidence. Adv. Nutr. 2017:8(6):933–946. https://doi.org/10.3945/an.117.01669110.3945/an.117.016691 Search in Google Scholar

[57] Miller V., Webb P., Micha R., Mozaffarian D. Defining diet quality: a synthesis of dietary quality metrics and their validity for the double burden of malnutrition. Lancet Planet. Heal. 2020:4(8):e352–e370. https://doi.org/10.1016/S2542-5196(20)30162-510.1016/S2542-5196(20)30162-5 Search in Google Scholar

[58] Acheampong M. et al. Is Ghana Ready to Attain Sustainable Development Goal (SDG) Number 7 ? A Comprehensive Assessment of Its Renewable Energy Potential and Pitfalls. Energies 2019:12(3):408. https://doi.org/10.3390/en1203040810.3390/en12030408 Search in Google Scholar

[59] Georgeson L., Maslin M. Putting the United Nations Sustainable Development Goals into practice: A review of implementation, monitoring, and finance. Geo Geogr. Environ. 2018:5(1):1–25. https://doi.org/10.1002/geo2.4910.1002/geo2.49 Search in Google Scholar

[60] Iancu D., Ionescu G. H., Jianu E., Patrichi I. C., Ghiocel F., Lili T. Assessment of Sustainable Development Goals (SDG) Implementation in Bulgaria and Future Developments. Sustainability 2021:13(21):12000. https://doi.org/10.3390/su13211200010.3390/su132112000 Search in Google Scholar

[61] Benedek J., Holobâc I., Ivan K., Temerdek A. Indicator-based assessment of local and regional progress toward the Sustainable Development Goals (SDGs): An integrated approach from Romania. Sustain. Dev. 2021:29(5):860–875. https://doi.org/10.1002/sd.218010.1002/sd.2180 Search in Google Scholar

[62] Londoño-Pineda A., Cano J. A., Gómez-Montoya R. Application of AHP for the Weighting of Sustainable Development Indicators at the Subnational Level. Economies 2021:9(4):169. https://doi.org/10.3390/economies904016910.3390/economies9040169 Search in Google Scholar

[63] Londoño A., Cano J. A., Czerny M. Governance approach to the prioritization of sustainable development goals in the city of Medellin (Colombia). Urbe 2021:13(e20200288):1–16. https://doi.org/10.1590/2175-3369.013.e2020028810.1590/2175-3369.013.e20200288 Search in Google Scholar

[64] Sachs J., Schmidt-Traub G., Kroll C., Lafortune G., Fuller G. Sustainable Development Report 2019: Transformations to achieve the Sustainable Development Goals. New York, 2019. [Online]. Available: https://www.bertelsmannstiftung.de/en/publications/publication/did/sustainable-development-report-2019. Search in Google Scholar

[65] OECD. Measuring distance to the SDG targets 2019: An assessment of where OECD countries stand. Paris, 2019. [Online]. Available: https://www.oecd.org/wise/measuring-distance-to-the-sdg-targets-2019-a8caf3fa-en.htm. Search in Google Scholar

[66] Eurostat. Sustainable development in the European Union: Monitoring report on progress towards the SDGs in an EU context (2021 edition). Luxembourg, 2021. Search in Google Scholar

[67] UN. The Sustainable Development Goals Report. New York, 2021. [Online]. Available: https://unstats.un.org/sdgs/report/2021/ Search in Google Scholar

[68] UN. Sustainable Development Goals Progress Chart 2021. 2021. [Online]. Available: https://unstats.un.org/sdgs/report/2021/progress-chart-2021.pdf Search in Google Scholar

[69] Holden E., Linnerud K., Banister D., Schwanitz V., Wierling A. The imperatives of sustainable development: needs, justice, limits. New York, NY: Roudledge, 2018. Search in Google Scholar

[70] Maso M. D., Olsen K. H., Dong Y., Pedersen M. B. Sustainable development impacts of nationally determined contributions: assessing the case of mini-grids in Kenya. Clim. Policy 2020:20(7):815–83. https://doi.org/10.1080/14693062.2019.164498710.1080/14693062.2019.1644987 Search in Google Scholar

[71] Marcinko C. L. J. et al. The Development of a Framework for the Integrated Assessment of SDG Trade-Offs in the Sundarban Biosphere Reserve. Water 2021:13(4):528. https://doi.org/10.3390/w1304052810.3390/w13040528 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo