Uneingeschränkter Zugang

Quantitative and Qualitative Assessment of Healthcare Waste and Resource Potential Assessment


Zitieren

[1] Sherman J. D. et al. The Green Print: Advancement of Environmental Sustainability in Healthcare. Resources, Conservation and Recycling 2020:161:104882 https://doi.org/10.1016/j.resconrec.2020.10488210.1016/j.resconrec.2020.104882 Search in Google Scholar

[2] Pereno A., Eriksson D. A multi-stakeholder perspective on sustainable healthcare: From 2030 onwards. Futures 2020:122:102605. https://doi.org/10.1016/j.futures.2020.102605.10.1016/j.futures.2020.102605737528032834076 Search in Google Scholar

[3] Dri M., Canfora P., Antonopoulos I., Gaudillat P. Best Environmental Management Practice for the Waste Management Sector. Publications Office of the European Union, Luxembourg, 2018. http://dx.doi.org/10.2760/50247 Search in Google Scholar

[4] Emmanuel J. et al. Safe management of wastes from health care activities. Geneva, Switzerland: World Health Organisation 2014:79(2):171. Search in Google Scholar

[5] Health Care Without Harm Europe. Sustainable healthcare waste management in the EU Circular Economy model. 2020:1–7. https://noharm-europe.org/sites/default/files/documents-files/6608/2020-11_HCWH-Europe-position-paper-waste.pdf Search in Google Scholar

[6] Padmanabhan K. K., Barik D. Health hazards of medical waste and its disposal. In Energy from Toxic Organic Waste for Heat and Power Generation. Woodhead Publishing Series in Energy 2019:99–118. https://doi.org/10.1016/B978-0-08-102528-4.00008-010.1016/B978-0-08-102528-4.00008-0 Search in Google Scholar

[7] Das A. K., Islam M. N., Billah M. M., Sarker A. COVID-19 pandemic and healthcare solid waste management strategy – A mini-review. Science of The Total Environment 2021:778:146220. https://doi.org/10.1016/j.scitotenv.2021.14622010.1016/j.scitotenv.2021.146220793285233711590 Search in Google Scholar

[8] Haque M. S., Uddin S., Sayem S. M., Mohib K. M. Coronavirus disease 2019 (COVID-19) induced waste scenario: A short overview. Journal of Environmental Chemical Engineering 2021:9(1):104660. https://doi.org/10.1016/j.jece.2020.10466010.1016/j.jece.2020.104660764851433194544 Search in Google Scholar

[9] Ilyas S., Srivastava R. R., Kim H. Disinfection technology and strategies for COVID-19 hospital and bio-medical waste management . Science of The Total Environment 2020:749.141652. https://doi.org/10.1016/j.scitotenv.2020.14165210.1016/j.scitotenv.2020.141652741932032822917 Search in Google Scholar

[10] Emmanuel J. Compendium of Technologies for the Treatment/Destruction of Healthcare Waste. United Nations Environment Programme, 2012. Available: https://wedocs.unep.org/bitstream/handle/20.500.11822/8628/IETC_Compendium_Technologies_Treatment_Destruction_Healthcare_Waste.pdf?sequence=3&isAllowed=y Search in Google Scholar

[11] Minoglou M., Komilis D. Describing health care waste generation rates using regression modeling and principal component analysis. Waste Management 2018:78:811–818. http://dx.doi.org/10.1016/j.wasman.2018.06.05310.1016/j.wasman.2018.06.05332559976 Search in Google Scholar

[12] World Health Organization. Overview of technologies for the treatment of infectious and sharp waste from health care facilities. Geneva, Switzerland: World Health Organization . 2019. Available: https://apps.who.int/iris/bitstream/handle/10665/328146/9789241516228-eng.pdf?sequence=1&isAllowed=y Search in Google Scholar

[13] U. Union European. Generation of waste by waste category, hazardousness and NACE Rev. 2 activity Source of data : Eurostat [env_wasgen ] UNIT: Tonne HAZARD: Hazardous and non-hazardous - Total WASTE: Total waste NACE_R2: Households. [Online]. [Accessed 01.05.2021] Available: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_wasgen&lang=en Search in Google Scholar

[14] U. Union European. Population on 1 January by age and sex Source of data: Eurostat AGE: Total SEX: Total [Online]. [Accessed: 01.05.2021]. Available: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=demo_pjan&lang=en Search in Google Scholar

[15] Su G., Ong C. H., Ibrahim S., Fattah M. R. I., Mofijur M., Chong T. C. Valorisation of medical waste through pyrolysis for a cleaner environment: Progress and challenges. Environmental Pollution 2021:279:116937. https://doi.org/10.1016/j.envpol.2021.11693410.1016/j.envpol.2021.116934975675633744627 Search in Google Scholar

[16] Zhang L., Wu L., Tian F., Wang Z. Retrospection-simulation-Revision: Approach to the analysis of the composition and characteristics of medical waste at a disaster relief site. PLoS One 2016:11(7):1–12. https://doi.org/10.1371/journal.pone.015926110.1371/journal.pone.0159261494493127414649 Search in Google Scholar

[17] Mohseni-Bandpei A., Majlesi M., Rafiee M., Nojavan S., Nowrouz P., Zolfagharpour H. Polycyclic aromatic hydrocarbons (PAHs) formation during the fast pyrolysis of hazardous health-care waste. Chemosphere 2019:227:277–288. https://doi.org/10.1016/j.chemosphere.2019.04.02810.1016/j.chemosphere.2019.04.02830999169 Search in Google Scholar

[18] Graikos A., Voudrias E., Papazachariou A., Iosifidis N., Kalpakidou M. Composition and production rate of medical waste from a small producer in Greece. Waste Management 2010:30(8–9):1683–1689. https://doi.org/10.1016/j.wasman.2010.01.02510.1016/j.wasman.2010.01.02520156673 Search in Google Scholar

[19] Latvian Environmental Geology and Meteorology Center. Environmental Statistics Reports ‘3-Waste.’ [Online]. [Accessed: 01.05.2021]. Available: http://parissrv.lvgmc.lv/#viewType=reportIndexView&type=3WA&incrementCounter=1 Search in Google Scholar

[20] JRC. Best Available Techniques (BAT) Reference Document for Waste Treatment Industries (Draft). 2015. Search in Google Scholar

[21] Wang J. et al. Disinfection technology of hospital wastes and wastewater: Suggestions for disinfection strategy during coronavirus Disease 2019 (COVID -19) pandemic in China. Environmental Pollution 2020:262:114665. https://doi.org/10.1016/j.envpol.2020.11466510.1016/j.envpol.2020.114665719456632443202 Search in Google Scholar

[22] Deus M. R., Mele D. F., Bezerra S. B., Battistelle A. G. R. A municipal solid waste indicator for environmental impact: Assessment and identification of best management practices . Journal of Cleaner Production 2020:242:118433. https://doi.org/10.1016/j.jclepro.2019.11843310.1016/j.jclepro.2019.118433 Search in Google Scholar

[23] Thokala P. et al. Multiple criteria decision analysis for health care decision making - An introduction: Report 1 of the ISPOR MCDA Emerging Good Practices Task Force. Value in Healht 2016:19(1):1–13. https://doi.org/10.1016/j.jval.2015.12.00310.1016/j.jval.2015.12.00326797229 Search in Google Scholar

[24] Diaby V., Campbell K., Goeree R. Multi-criteria decision analysis (MCDA) in health care: A bibliometric analysis. Operations Research for Health Care 2013:2(1–2):20–24. https://doi.org/10.1016/j.orhc.2013.03.00110.1016/j.orhc.2013.03.001 Search in Google Scholar

[25] Yu D., Pan T. Tracing knowledge diffusion of TOPSIS: A historical perspective from citation network. Expert Systems with Applications 2021:168:114238. https://doi.org/10.1016/j.eswa.2020.11423810.1016/j.eswa.2020.114238 Search in Google Scholar

[26] Li X. TOPSIS model with entropy weight for eco geological environmental carrying capacity assessment. Microprocessors and Microsystems 2121:82:103805. https://doi.org/10.1016/j.micpro.2020.10380510.1016/j.micpro.2020.103805 Search in Google Scholar

[27] Vinyl Council of Australia. In Healthcare - PVC Recycling in Hospitals. [Online]. [Accessed: 01.05.2021]. Available: https://www.vinyl.org.au/pvc-recycling-in-hospitals Search in Google Scholar

[28] A guide to recycling PVC medical product waste. [Online]. [Accessed: 01.05.2021]. Available: https://www.vinyl.org.au/images/vinyl/Sustainability/PVCRecoveryInHospitals.pdf Search in Google Scholar

[29] TerraCycle Recycling of Personal Protective Equipment . [Online]. [Accessed : 01.05.2021]. Available: https://www.terracycle.com/en-US/pages/ppe-recycling Search in Google Scholar

[30] FRANCE 24. Face mask recycling: French firm finds way to re-use Covid waste. [Online]. [Accessed: 18.02.2021]. Available: https://www.france24.com/en/20200827-face-mask-recycling-french-firm-finds-way-to-re-use-covid-waste Search in Google Scholar

[31] Hamada K. L., Ismail Z. Z. Sustainable Approach for Recycling Medical Waste Needles to Partially Replace Aggregate in Lightweight Concrete Production. Advances in Science and Technology Research Journal 2021:14(1):166–173. https://doi.org/10.12913/22998624/13155710.12913/22998624/131557 Search in Google Scholar

[32] Zhu J., Chen X., Ruan J., Li Y., He E., Xu Z. A safe and efficient technology of recovering nano glass from penicillin bottles of medical waste s. Journal of Cleaner Production 2019:229:632–639. https://doi.org/10.1016/j.jclepro.2019.05.07210.1016/j.jclepro.2019.05.072 Search in Google Scholar

[33] Kaur H., Siddique R., Rajor A. Influence of incinerated biomedical waste ash on the properties of concrete. Construction and Building Materials 2019:226:428–441. https://doi.org/10.1016/j.conbuildmat.2019.07.23910.1016/j.conbuildmat.2019.07.239 Search in Google Scholar

[34] Bujak J. Experimental study of the energy efficiency of an incinerator for medical waste. Applied Energy 2009:11:86: 2386–2393. https://doi.org/10.1016/j.apenergy.2009.03.01610.1016/j.apenergy.2009.03.016 Search in Google Scholar

eISSN:
2255-8837
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, andere