Uneingeschränkter Zugang

TiO2 Application for the Photocatalytical Inactivation of S. enterica, E. coli and M. luteus Bacteria Mixtures

Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
SPECIAL ISSUE OF ENVIRONMENTAL AND CLIMATE TECHNOLOGIES PART II: The Green Deal Umbrella for Environmental and Climate Technologies

Zitieren

[1] Paulus G. K., et al. The impact of on-site hospital wastewater treatment on the downstream communal wastewater system in terms of antibiotics and antibiotic resistance genes. International Journal of Hygiene and Environmental Health 2019:222(4):635–644. https://doi.org/10.1016/j.ijheh.2019.01.00410.1016/j.ijheh.2019.01.004Search in Google Scholar

[2] Al-Rashidi R., Rusan M., Obaid K. Changes in plant nutrients, and microbial biomass in different soil depths after long-term surface application of secondary treated wastewater. Environmental and Climate Technologies 2013:11(1):28–33. https://doi.org/10.2478/rtuect-2013-000410.2478/rtuect-2013-0004Search in Google Scholar

[3] Strade E., Kalnina D. Cost Effective Method for Toxicity Screening of Pharmaceutical Wastewater Containing Inorganic Salts and Harmful Organic Compounds. Environmental and Climate Technologies 2019:23(1):52–63. https://doi.org/10.2478/rtuect-2019-000410.2478/rtuect-2019-0004Search in Google Scholar

[4] Haaken D., et al. Limits of UV disinfection: UV/electrolysis hybrid technology as a promising alternative for direct reuse of biologically treated wastewater. Journal of Water Supply: Research and Technology - AQUA 2013:62(7):442–451. https://doi.org/10.2166/aqua.2013.13410.2166/aqua.2013.134Search in Google Scholar

[5] Bustillo-Lecompte C. F., Mehrvar M. Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: A review on trends and advances. Journal of Environmental Management 2015:161:287–302. https://doi.org/10.1016/j.jenvman.2015.07.00810.1016/j.jenvman.2015.07.008Search in Google Scholar

[6] Bustillo-Lecompte C., Mehrvar M., Quiñones-Bolaños E. Slaughterhouse wastewater characterization and treatment: An economic and public health necessity of the meat processing industry in Ontario, Canada. Journal of Geoscience and Environmental Protection 2016:4(4):175–186. https://doi.org/10.4236/gep.2016.4402110.4236/gep.2016.44021Search in Google Scholar

[7] Babu D. S., et al. Detoxification of water and wastewater by advanced oxidation processes. Science of the Total Environment 2019:696:133961. https://doi.org/10.1016/j.scitotenv.2019.13396110.1016/j.scitotenv.2019.133961Search in Google Scholar

[8] Krumins J., Robalds A. Biosorption of metallic elements onto fen peat. Environmental and Climate Technologies 2014:14(1):12–17. https://doi.org/10.1515/rtuect-2014-000810.1515/rtuect-2014-0008Search in Google Scholar

[9] Oliveira A. G., et al. Decontamination and disinfection of wastewater by photocatalysis under UV/visible light using nano-catalysts based on Ca-doped ZnO. Journal of Environmental Management 2019:240:485–493. https://doi.org/10.1016/j.jenvman.2019.03.12410.1016/j.jenvman.2019.03.124Search in Google Scholar

[10] Li C., et al. Enhanced visible-light-induced photocatalytic performance of Bi2O3 /ZnAl-LDH–C for dyes removal in water. Materials Letters 2019:244:215–218. https://doi.org/10.1016/j.matlet.2018.12.08410.1016/j.matlet.2018.12.084Search in Google Scholar

[11] Murgolo S., et al. Degradation of emerging organic pollutants in wastewater effluents by electrochemical photocatalysis on nanostructured TiO2 meshes. Water Research 2019:164:114920. https://doi.org/10.1016/j.watres.2019.11492010.1016/j.watres.2019.114920Search in Google Scholar

[12] Nogueira V., et al. Treatment of real industrial wastewaters through nano-TiO2 and nano-Fe2O3 photocatalysis: case study of mining and kraft pulp mill effluents. Environmental Technology (United Kingdom) 2018:39(12):1586–1596. https://doi.org/10.1080/09593330.2017.133409310.1080/09593330.2017.1334093Search in Google Scholar

[13] Al-Mamun M. R., et al. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. Journal of Environmental Chemical Engineering 2019:7(5):103248. https://doi.org/10.1016/j.jece.2019.10324810.1016/j.jece.2019.103248Search in Google Scholar

[14] Varnagiris S., et al. Floating TiO2 photocatalyst for efficient inactivation of E. coli and decomposition of methylene blue solution. Science of the Total Environment 2020:720:137600. https://doi.org/10.1016/j.scitotenv.2020.13760010.1016/j.scitotenv.2020.137600Search in Google Scholar

[15] Robertson J. M. C, Robertson P. K. J., Lawton L. A. A comparison of the effectiveness of TiO2 photocatalysis and UVA photolysis for the destruction of three pathogenic micro-organisms. Journal of Photochemistry and Photobiology A: Chemistry 2005:175(1):51–56. https://doi.org/10.1016/j.jphotochem.2005.04.03310.1016/j.jphotochem.2005.04.033Search in Google Scholar

[16] Zan L., et al. Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on Hepatitis B virus. Journal of Photochemistry and Photobiology B: Biology 2007:86(2):165–169. https://doi.org/10.1016/j.jphotobiol.2006.09.00210.1016/j.jphotobiol.2006.09.002Search in Google Scholar

[17] Nobre F. X., et al. Heterogeneous photocatalysis of Tordon 2,4-D herbicide using the phase mixture of TiO2. Journal of Environmental Chemical Engineering 2019:7(6):103501. https://doi.org/10.1016/j.jece.2019.10350110.1016/j.jece.2019.103501Search in Google Scholar

[18] Moreira N. F. F., Narciso-da-Rocha C., Polo-López M. I. Solar treatment (H2O2, TiO2-P25 and GO-TiO2 photocatalysis, photo-Fenton) of organic micropollutants, human pathogen indicators, antibiotic resistant bacteria and related genes in urban wastewater. Water Research 2018:135:195–206. https://doi.org/10.1016/j.watres.2018.01.06410.1016/j.watres.2018.01.064Search in Google Scholar

[19] Jiménez-Tototzintle M., et al. Removal of contaminants of emerging concern (CECs) and antibiotic resistant bacteria in urban wastewater using UVA/TiO2/H2O2 photocatalysis. Chemosphere 2018:210:449–457. https://doi.org/10.1016/j.chemosphere.2018.07.03610.1016/j.chemosphere.2018.07.036Search in Google Scholar

[20] Zheng X., et al. Photocatalytic disinfection performance in virus and virus/bacteria system by Cu-TiO2 nanofibers under visible light. Environmental Pollution 2018:237:452–459. https://doi.org/10.1016/j.envpol.2018.02.07410.1016/j.envpol.2018.02.074Search in Google Scholar

eISSN:
2255-8837
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, andere